No. 1. - Reports on the Dredging Operations off the West Coast of Central America to the Galapagos, to the West Coast of Mexico, and in the Gulf of California, in charge of Alexander Agassiz, carried on by the U. S. Fish Commission Steamer "Albatross" during 1891, Lieut. Commander Z. L. Tanner, U. S. N., Commanding. XXIX.

Reports on the Scientific Ricsults of the Expedition to the Tropical Pucific, in charge of Alexander Agassiz, on the U. S. Fish Commission Stecmer " Albatross," from August, 1899, to Mareh, 1900, Commander Jefferson T. Moser, U. S. N., Commanding. V.

Reports on the Cephalopoda. By William E. Hoyle.

The collection made by the "Albatross" during 1891 came into my hands in the year 1892. In the summer of 1893 I took the specimens to Copenhagen and spent some time studying them in the Zoölogical Museum of that city. I had then the pleasure and privilege of discussing the more interesting forms with the doyen of students of Cephalopoda, Professor Steenstrup, and with his assistant, Dr. Posselt. Both these have since died, but the memory of their ready sympathy and helpful comnsel remains and is hero gratefully acknowledged. I have also received assistance from my friend Dr. Georg Pfeffer, for which I beg to tender him my sincere thanks.

Some preparations of the luminous organs of Abraliopsis were exhibited at the meetiug of the German Zo logical Society at Göttingen in 1893, and also at the Dritish Association in Nottingham in the same year, but after that, owing to the elaims arising from the charge of a rapidly growing museum, no further progress was mado for some years.

The collection consists of thirty species (including a few forms to which I have not fouml it possible to aftix names), distributed in nineteen genera, one of which (Froekenia) is uew. Another (Pterygiotenthis)
was first found by the "Albatross," but its publication las been anticipated by the description of an immature example by Dr. H. Fischer in 1896. There are six species described as new. I have also proposed a new genus (Pyroteuthis) for the Enoploteuthis maryaritifera of Rüppell.

In thie preparation of the Plates I have utilized a number of watercolor drawings made on the expedition by Mr. Agassiz and Mr. Magnus Westergren whilst the anmals were still fresh and the colors of life retainel. It would be well if this practice had been followed on other expeditions, as the appearance of Cephalopoda changes very markedly after preservation in alcohol. The other figures are based upon my own sketches, carefully made to scale, and in making the finished drawings I have had the assistance of Miss Mabel B. Ede, Miss E. R. Dust, and Dr. J. H. Ashworth.

In conclusion I have to express my gratitude to Mr. Agassiz for the opportunity of studying such an interesting collection.

I subsequently received a smaller collection made by the "Albatross" during a cruise among the Pacific Islands in 1899-1900, which contained thirteen species, one of which was new to science and forms the type of a new genus, Cirrolrachium.

LIST OF SPECIES.

OCTOPOD. PAOE	14. Polypus tonganus? . . $\begin{array}{r}\text { Page } \\ \hline 17\end{array}$
Cirroteuthidae 3	15. " januarii . . . 18
1. Cirrotcuthis, sp. 4	16. " macropus? . . . 18
2.0 sp. . . . 4	17. " sp. 18
3. Stunroteuthis hippocrepiun,	18. " sp. 20
sp. n 6	19. " sp. 20
4. Fioekenia clura, g. n.,	20. " sp. 20
sp. n. î	21. Moschites rotuada . . . 21
Alloposidne 8	22. " rerrucosa . . . 21
5. Bu'itarna mirrocutyla . . 9	2\%. Eledonella diaphana . . 20)
Argonautidae 11	24. Inpetella prismatica. . . 23
6. Argonautu himus . . . 11	11:CAlol)A.
7.0 argo 12	Mrorsibs.
8.0 " 8 1. . . . 12	Sepiolidae 21
Tremoctopodidac 12	25. Euprymnu stenoductyla . 24
?. Tremoctopms quoyanus . . J2	Incertae sedis 28
10. " sculenus, sp n. 13,	26. Cirrobruchium filiferum,
Iolypoilidae 11	\& n., sp. n. 28
11. Polypus orcidentuhis . 1t	Louliginilat 29
12. " oculifer, sp. n. . . It	2i. Salino diomedcae, sp. n. . 23
10. " pusillus 10	28. Seplootuthis luaulatas . . 31

Cgopsida
Ommastrephidae 31
29. Ommastrephes, sp.? 31
30. Symplectoteuthis onalaniensis 32
31. Rhynchoteuthis chuni, sp. n. 32
Bathyteuthidae 33
32. Bathyteuthis abyssicola 33
Mastigoteuthidae 34
33. Mastigoteuthis dentata, sp. n. 34
Onychoteuthidae 35
34. Onychoteuthis banksi 35
35. Teleoteuthis caribcea 35
PAGE page
36. Onychoteuthid, gen.et sp.? 3f
Enoploteuthidae 36
37. Abraliopsis hoylei 36
38. 38
39. Pterygioteuthis giardi 39
Histioteuthidae 42
40. Calliteuthis reversa $4:$
Cranchiidae 4:3
41. Cranchia scabra 43
42. Taonius, sp. 44
Incertae sedis 44
43. Decapod, fam., gen. et sp .? 44

Family CIRROTEUTHIDAE.

Cirroteuthidae, Keferstein, '66, p. 1447.
This family was defined ly its founder Keferstein ('66, p. 1447) as follows: "Körper mit rundlichen Flossen, von weicher Consistenz. Mantel rundum bis zur Trichterbasis mit dem Kopfe verwaehsen. Eine knorpelige, breite innere Schale (wahrscheinlich als verwachsene Rückenknorpel anzusehen)." This definition still holds good in all essential points : there might be adled to it the words, - "suckers in a single series alternating with paired cirri, ralula absent;" and in view of the variety which has since been shown to exist in the form of the internal cartilage, the word "breite" might be advantageously omitted.

Here are incluled at present the following genera : -
Cirroteuthis. - Dorsal cartilage saddle-shaped ; umbrella present, intermediate web present or absent.

Stcuroteuthis. - Dorsal cartilage horseshoe-shaped with the free ends directed towards the head; umbrella present, intermediate web present.

Froekenia. - Dorsal cartilage horseshoe-shapel, the free ends directed towards the bead ; umbrella absent.

CIRROTEUTHIS.

Cirrotcuthis Eschricht, '36, p. 627.
The species of this genus hitherto known may be discriminated by the annexed key : -

1. $\{$ Total length to breadth about $3: 1$ plena Verrill.
2. $\{$ Total length to breadth more than $4: 1$ 2.
3. $\left\{\begin{array}{l}\text { Length and breadth of fin equal to length and } \\ \text { breadth of body } \\ \text { Length and breadth of fin less than length and } \\ \text { brealth of body }\end{array}\right.$ 3.

The characters of C. umbelluta as given by Fischer (83, p. 402) do not enable me to discriminate between his species and those described by Verrill; in lact, from the account of his two larer specimens it seems not unlikely that they ought to be referred to the renus Upisthoteuthis Verrill ('83, p. 113). The phrase "le corps . . . était tellement court qu'on ne distinguait, au premier abord, que le disque formé par les bras, et que l'animal rassemblait en quelque sorte à une astérie molle (Hymenaster)." A comparison of this description with the figures of O. depressa given by Ijima and Ikeda ('95, p. 133) is, to say the least of it, very suggestive.

Since the above was written I hare seen Professor Joubin's important work (: 01) on the collections made by the "Princesse Alice," in which be recorls the capture of examples ilentified with C. umbellata. He does not seem very certain of this illentification, for he speaks of having arrived at it "par exclusion successive," and adds that "les denx ou trois caractères signalés par P. Fischer, . . . s'ippliquent bien á l'échantillon de la Princesse Alice." It seems to me, bowever, that M. Joubin overlooks the important account of the general shape just alluded to. In any case a eomparison of his figures and deseriptions with those given below suggests very strongly that his specimens are the same as the species here called Stauroteuthis hippocrepium (see p. 6).

1. Cirroteuthis, sp.

Halritat. - Station 3414 , off Teluantepec, April \&, 1891; lat. $10^{\circ} 14^{\prime} \mathrm{N}$.; lonc. $96^{\circ} 23 \mathrm{~W}^{\circ} ., 2232$ fatloms ; green mult ; temperature, surface 82°, bottom 35.0 s ; one specimen, No. 7945 A. [H. 33.] ${ }^{1}$

But little is left of this specimen; the heal and body have entirely disappeared with the exception of one gill and one eye, and the arms have lost must of their intergment and of the umbrella connecting them. So far as can be suen, it agrees in many respects with C. pacifica from the "Challenger" Fxperlition (IIoyle, $86,5.61$), the only notewortly tifference being that the norlule which indicates the attachment of the web to the rentral site of the arm is rather less instead of rather more than halfway up the arm, but as the clorsal cartilage was not preserved, it is impossible to say with certainty whether it belonged to the genus Cirroteuthis or to Stauroteuthis.

2. Cirroteuthis, sp .

Habilat. - Station 33.5°; (ff Cape Mala ; Fehruary $2 t, 1591$; lat. 6030° Ň., long. $81^{\circ} .41^{\prime} \mathrm{W}^{\prime}$, 555° fathoms ; temperature, surface 83°, lottom, $40 . \circ^{2}$; green sam.

1 The numbers in square brackets preceded by "II" refer to my own register of specimens examined.

On the margin of the drawing of specimen 7961 is a memorandum to the effect that the " wire came up with a large film of the violet membrane of tentacles: must have been a large specimen at least $\times 20$ this one." No further record is to be found, and the fragments do not appear to have been preserved.

STAUROTEUTHIS.

Stauroteuthis Verrill, '79, p. 468; '81, p. 382, Plate 32, Figs. 1-5.
In the "Challenger" Report (Hoyle, '86, p. 61), I ventured to throw some doubt on the validity of this genus. The examination of the "Albatross" collection has, however, led me to believe that these doubts were ill foundel. The genus presented many obvious resemblances to Cirroteuthis, and it appeared quite possible that the recorded differences were due to defects in the preservation of the specimens. The chief points of distinction seemed to be the form and position of the dorsal cartilage and the attachment of the web to the tips of the arms.

With respect to the former I have now no doubt whatever that the horizontal position of the horseshoe-shaped cartilage is normal. This was unquestionably the case in the specimen (No. 7942), which forms the type of S., hippocrepium below: it was seen too in the young specimen figured in the "Challenger" Report ('86, p. 65, Plate 13, Figs. 5, 6). In that particular instance I regarded it as a juvenile character, for in the example, which was taken to be a more mature one of the same species, the cartilage seemed to be placed vertically. That specimen was, however, much distorted, and I now incline to the view that the horseshoe-shaped cartilage is normally borizontal, as Professor Verrill has figured it in the type of his genus.

To the genus Stauroteuthis I should now refer the following species which may be thus diagnosed :-

1. S. syrtensis: "cartilage forming a median angle, directed backward": fins triangular ; umbrella reaching equally up dorsal and ventral aspects of the arm; no nodule where the free edge of the web joins the ventral aspect of the arm ; intermediate web present. ${ }^{1}$
2. S. meangensis: cartilage horseshoe-shaped with angular process on the outer aspect of the curve ; fins long, narrow, and pointerl ; umbrella extending only four-fifths up the rentral aspect of the arm and provided with a nodule where it joins the arm ; intermeliate web absent.
3. S. hippocrepium: cartilage horseshoe-shaped, smonth externally; fins paddle-shaped ; umbrella extending nearly halfway up the ventral aspect of the arm, and provided with a nodule at the point of union ; intermediate web absent.
${ }^{1}$ By "intermediate" web is meant a membrane which joins the arms to the umbrella.

3. Stauroteuthis hippocrepium, sp. n.

(Plate 1, Fig. 1; Plate 2, Fig. 1; Plate 3, Figs. 1-4.)

Habitat. - Station 3374, southwest of Malpelo Island ; March 3, 1891 ; lat. $2^{\circ} 35^{\prime} \mathrm{N}$. ., long. $83^{\circ} 53^{\prime} \mathrm{W}$., 1823 fathoms; green ooze ; temperature, surface 80°, bottom $36 .{ }^{\circ} 4$; one specimen, No. 7942 . [H. 4.].]

The Body is oroid, about half as long again as broad ; the mantle-opening, as usual in the genus, closely surrounds the base of the siphon, which is comparatively small and subulate. What remains of the fins (Plate 3, Fig. 2) is muscular, flattened, pointed, and directed outwards and forwards; at the base of each is a gently bollowed, subtriangular surface, which during life articulated with the external surface of the anterior end of the dorsal cartilage (Plate 3, Fig. 3). There are, however, traces of a membranous expansion on the anterior elge of the fin. The dorsal cartilage is horseshoe-shaped (Plate 3, Fig. 1) and disposed in the horizontal plane of the body, with the concavity directel forwards: its surface is smooth, without any characteristic markings or prominences.

The Head is so maceraterl that no description of it is possible.
The Arms are subequal, and rather stout, soft, and tapering, rounded on the aboral aspect, wedye-shaped on the oral, the row of suckers nccupying the narrow end of the welge. All have lost their tips so the measurements given are merely approximate ; their original length, however, would be from 5 to 10 mm . greater than the dimensions here given. The umbrella is entirely wanting, but it appears to have been attached directly to the arm, so that there was no intermediate web. It is impossible to ascertain how fir the web extenderl on the dorsal side of the arm, but on the ventral its attachment terminated nearly halfway up the arm about the 25 th sucker, as is shown by the presence in that position of a horny induration (Fig. 4) somewhat resembling that in S. meungensis (Hoyle, '86, Plate 11, Fig. 2). The suclicrs are upwards of 50 in number, and of the ustual form, the largest heing just over 1 mm . in diameter. The cirri are very small and begin as minute papillae only perceptille with a lens between the fonth and fifth suckers; they extemd up the arms leyond the altachment of the web on the ventral aspect, but how mucb further it is impossible to sily.

The color, whell captured, is shown in Plate 1, Fig. 1, Plate 2, Fig. 1.

lhimensions.

Jength, total a)
Same of boty to mantle-margin 2.3
Breadth of borly $\therefore 0$
Breatth of head 22
Lenurth of fin ${ }^{1}$ 28
Breadth of fin (at origin) 13
liameter of largest sucker on arm 1.2
${ }^{1}$ The lengll, of the fin is measured from the ront outwards towaris the tip.

Fortunately two excellent colored drawings were made of this specinien when it was captured, which give a much better ideat of its general appearance than could be obtained from the sadly mutilated creature which came into my hands. The animals of this family seem particularly difficult to preserve, whether it is that their gelatinous tissues are not easily permeated by the alcohol or what the calluse may be I know not, but no single well-preserved example of this family has ever come into my hands. ${ }^{1}$ In the present instance the body was much clecomposed, especially on the dorsal aspect, where the integument and subjacent tissues had entirely disappeared, leaving the cartilage in situ, but with its upper surface clearly exposed to view (Plate 3, Fig. 2) in such a way as to leave no doubt as to what was its normal position. The significance of this in reference to the generic position of the species I have already dwelt upon.

I have remarked above that the figures and description of the examples called by M. Joubin (: O1) Cirroteuthis umbellata present a very striking resemblance to the species just described. This identification does not rest on a comparison with the type, and seems to me to be at variance with an important passage in Fischer's all-too-short diagnosis. Unfortunately M. Joubin gives no account of the form or position of the internal cartilage, which would furuish important evidence for or against the view here suggested.

FROEKENIA, g. n. ${ }^{2}$

Allied to Cirroteuthis, with paired fins at the sides, but with no connecting membranes between the arms.

4. Froekenia clara, sp. n.

(Plate 2, Fig. : Plate 3, Fig. 5.)
IIahtat. - Station 335s, off Cape Mala, Febrmary 2t, 1891 ; lat. $6^{\circ} 30^{\prime}$ N., long. $81^{\circ} 44^{\prime} \mathrm{W}$., 5 5月5 fathoms ; green sand ; temparature, surfice 83°, bottom $40{ }^{\circ}{ }^{\circ}$. One specimen, No. 7961. [H. 50.]

The Borly is ovoid, broulest just in frout of the fins, tapering slightly towarls the hinder extremity. The fins are about equal in length to the breatta of

1 Verrill ('96, p. 75, footnote) mentions that satisfactory results may be obtained by the nse of a refrigerator.
"From the Danish word "Froken," in honor of a lady to whose help I am indebted for much of the leisure utilized in preparing this lepport.
the boily, sub-elliptical in shape, the posterior margin almost straight, the anterior more curved. The internul cartiluge (Plate 3, Fig. 5) lies in a horizontal plane around the hinder end of the body ; it is almost semicircular, delicate and trimsparent, and pointed at the extremities ; on the external surface near the extremity is a facet with which the base of the fin articulates ; the long axis of the fin is directed somewhat forward with respect to the median axis of the cartilage.

The Head is short ; the eyes prominent, standing out somewhat further than the siles of the body.

The Arms are long, slender, and sub-equal, and taper very gradually to their ends, lut as these were in many instances mutilatel, it is impossible to give accurate dimensions: the length was, however, about $5-6 \mathrm{~cm}$. The suckers are small, placed in a single series, very closely set, and of firm consistency, embelded in much soft connective tissue and not in the muscular sulstance of the arms. Most of the suckers were lost, and it was only bere and there that 1 could find traces of the cirri alternating with them: these I did find were a little longer than the diameter of the suckers, and rather stout and blunt.

The Culor, when alive, is shown in the sketch reproduced on Plate 2, Fio. 2.

The solitary specimen on which this species is based came into my hands in a state approaching disintegration and fell to pieces under very carethl hamuling. The characters which I was able to decipher are, however, quite sufficient to prove that it cannot be placel in any genus yet known. Fortunately a sketch, partly colored, was made of the animal immediately alter its capture, which, reproduced in Plate 2, gives the form and proportions of the animal much more clearly than could be ascertained from the preserved specimen. On the margin of the drawing is a memorandum lyy Mr. Agassiz to the effect that the creature was "like Cirroteuthis, but no film" (umbrella). This statement is very important, for it proves that the absence of the umbrella is not due to defective preservation.

Family alloposidae.

$$
\text { Alloposidlae, Verrill, '81, p. } 365 .
$$

BOLITAENA.

Bolitarna, Steenstrup, '59, p. 183.

Although this generic name was pulbished aml very brielly characterizen more than forty years :"on (stecustrup, '59, 1. 183), the type was first described in the "Challenger" Report (Hoyle, '86, ρ ' 16) from notes mate in the Copenhagen Musemm. It was then placed by me in the family Polyporlidas: (Octoporlidae) along with Eledonolla and some other forms, but on reconsidering the question in connection with the specimen to be described
below I have come to the conclusion that its affinities are rather with the genus Alloposus. It shares with this the soft gelatinous consistency, the short rounded boily, the relatively extensive unbrella, the large siphon, attached for its whole length to the inferior surface of the head, and the ligament attaching the margin of the mantle to the body in the middle line and passing just under the posterior edge of the siphon (compare Verill, '81, Plate 39, Fig. 2). The chief distinction is that it has only a single row of suckers, but I think this is hardly sufficient to outweigh the numerous points of resemblance. The genus may perhaps be regarded as having the same relation to Alloposus that Moschites (Eleclone) has to Polypus (Octopus).

5. Bolitaena microcotyla.

(Plate 3, Figs. 6-11; Plate 4, Fig. 1.) Bolitaena microcotyla, Steenstrup, '59, p. 183.
" " Hoyle, '86, p. 16.
Habitat. - Station 3410, off Bindloe Island, 4 miles W., April 3, 1891 ; lat. $0^{\circ} 19^{\prime} \mathrm{N}$., long. $90^{\circ} 3 t^{\prime} \mathrm{W}$., 331 fathoms ; black sand ; temperature, surface 822°, bottom $44 . \circ^{2}$; one specimen, No. 7955 . [H.55.]

This occurrence extends the known range of the genus, for the type species is from the Atlantic. The locality of a specimen in the Hamburg Museum, shown me by Dr. Pfeffer, is unknown.

In general appearance this young specimen resembled a spheroidal mass of jelly barely 2 cm . in diameter; on turning it about there were scen on one side several rows of suckers and on the other a deep transverse groove, whilst at opposite poles were two large eyes shining through the integument. The photographs reproduced on Plate 3 give an idea of the general appearance, whilst the semi-diagrammatic side-view (Fig. 10) shows more clearly the disposition of the parts.

The Body and Head have no line of demarcation between them, but form a rounded mass; the mantle-opening is very exteusive, reaching far beyond the eves; it presents a somewhat W-shaped appearance, owing to the arrangement of its attachments; the free border of the mantle is united to the ventral aspect of the body by a ligament in the middle line, which passes just under the binder margin of the fumel, whilst this latter has on either side a ligament binding it down to the apex of the gill (Plate 3, Fig. 11). The siphon is very broad at the base and tapers rapidly down to a long tube, which terminates at a considerable distance in front of the eves. The funnel organ is very prominent and indeed can be seen shining through the translucent wall of the siphon. It consists of an elongated white pad in the shape of a W, the central point being attached to the dorsal middle line of the siphon, whilst the extremities of the lateral limbs nearly meet in the ventral median line. On either side of the base of the siphon is a deep hollow, covered by a flap
of skin passing backward from the side of the head sn as to form a valre. This hollow space is traversel by a band of tissue containing the ganglion stellatum and the nerves connected with it . Behind the eye and just within the angle of the aperture of the mantle-cavity is a minute papilla, which is presumably the olfuctory organ. The rectum terminates at the base of the funnel in the middle line and emerges from the body wall through the ligamentous attachment of the mantle, which is forked to give it passage (Plate 3, Fig. 11). The anal appendages are spatulate. The radula has seven rows of teeth and does not show the arrangement stated by Steenstrup to be characteristic of the genus. According to him each row of the ralula liffers from those immediately preceding and following it, but in such a way that the pattern repeats itself every five rows. It is quite possible that this character may appear as the animal becomes more mature. The drawing on Plate 4, Fig. 1, will give a better iden of the form and proportions of the teeth than any verbal description.

Dimensions.

On npening the mantlocarity, this is seen to be very short from before backwarls, limt very cxtensive laterally. The mantle is only boumd down to the boly wall in the melian line for a short distance anterionly (Plate 3, Fig. 11): lwhiml this it is free, so that there is a communication between the two sides. The gills lie one on cither site, quite near the posterior margin of the sac ; each consinta of half a dozen lamellae, crescentic in form, with the concavity directed forwards, anl sublividel into mumerons tufts. Just at the apex of the gill is attachel the ligament which hinds down the lateral part of the siphon, and prucereding cutwaris from this is a broad fold of skin passing lackwards from the beal and forming a valve, when the mantle contracts over it. This fohl of skin is larer and loose, and the cavity, which is arched over by it curing expiration, must contain a considerable quantity of water, to which must also
${ }^{1}$ These numbers are exclusire of minute evanescent suckers at the tips of the arms.
be added the amount lodged in the lateral extensions of the mantle-cavity, which reach completely round the body, meeting behind the visceral sac. In those cephalopods in which the body is elongated antero-posteriorly there is a large space in the mantle-cavity, behind the gills; this may be fairly assumed to serve the purpose of holding a reserve supply of water which will gradually pass over the gills during expiration. In the present instance, owing to the short, rotund character of the body, space is found for a similar reserve store of water at the outer side of the gills. To the outer side of each gill this carity is traversed by a ligament which contains the pallial nerve, the gatholion stellatum, and the nerves proceeding from it. The specimen being small as well as unique I was able to make but few observations on its internal anatomy. The heart is fusiform, and lies transversely : the ink-sack is small and pyriform ; the renal appendages of the veins large and floceular in appearance, and there is the usual curved caecum at the bottom of the visceral sac. I was not able to ascertain the sex of the specimen.

I have recently had an opportunity of comparing this specimen with one belonging to the same genus in the Hamburg Museum, which closely rescmbles Steenstrup's type. I find the two specimens agree in the following points :

1. The form and arrangement of the suckers and the umbrella.
2. The mantle-cavity extending all round the visceral sac.
3. The presence of a ligament containing the stellate ganglion.
4. The wide aperture of the mantle-cavity.
5. The long siphon with intermediate ligaments.

The principal differences are that in the present individual the arms are proportionally larger and the umbrella does not extend so near to their ends, and that the siphon is proportionally somewhat longer.

Notwithstanding the difference in the raduki, above alluted to, I am inclined to believe the specimen under discussion to be a young example of Dolitaena microcotyla.

Family ARGONAUTIDE.

Argonauthdae Cantraine, '40, p. 20.'

ARGONAUTA.

Argonauta Limé, ؛58, p. 708.

6. Argonauta hians.

Argonauta hians Solander, :86, p. 44.
Argonauta gondola Adams \& Reeve, '48, p. 3, Plate 2, Figs. 2 i, 2 k, 21.
Habitut. - Station 3425, off Las Tres Marias; April 18, 1891 ; lat. $21^{\circ} 19^{\prime} \mathrm{N}$. , long. $106^{\circ} 2 t^{\prime}$ W., 680 fathoms; green mud and saml; temperature, surface 76°, bottom 39°; one specimen, No. 8133. [11. 60.]

This small broken specimen agrees exactly, as far as can be made out, with the figures of Adams and Reeve referred to above, and is of alout the same size. The specific name gonilola has been regarded by Von Martens ('67) and other authorities as a synonym of hians, and this view I have adopted.

7. Argonauta argo.

Argonauta argo Linné, ؛58, p. 708.
Habitat. - Station 3371, off Cocos Island; March 1, 1891 ; lat. $5^{\circ} 26^{\prime} 20^{\prime \prime}$ N., long. $80^{\circ} 55^{\prime} \mathrm{W}$. ; temperature, surface 82°; two shells, immature; No. 8172. [H. 57, 58.]

Station 2627 Hyd., off Cape San Francisco; March 25, 1891 ; lat. $0^{\circ} 36^{\prime}$ N., long. $82^{\circ} 45^{\prime} \mathrm{W}$.; temperature, surface 81°; one shell, immature; No. 8139. [H. 59.]

The three specimens all belong to what Dr. von Martens ('67, p. 104) calls the forma aurita, figured by Férussac and d'Orbigny ('35, Argonautes, Plate 2, Figs. 4, 5).

8. Argonauta, sp.

(Plate 10, Fig. 12.)

Hubitat. - 50 miles south of Guaymas, surface ; one specimen 9 . [H.56.]
Station 236, off Arhno, Marshall Islands ; Junuary 28, 1900; lat. $6^{\circ} 34^{\prime}$ N., long. 17()$^{\circ} 59^{\prime} \mathrm{E}$, surface, electric light; temperature, surface, 81°; one specimen $\&[$ H. 127], one δ [H. 145].

These specimens are too young to admit of their being referred to any particnlar species. The shell of the example from Guaymas (Plate 10, Fig. 12) is interesting as showing the form at this period of development: it is extremely delicate, and hence has been a little chipped at the eldge. The dorsal arms show the usual expansion, greatly shrunken and contractel by the action of the spirit.

Family TREMOCTOPODID E.

Tremoctopodidae Tryon, '79, p. 130.
Philunexidue (pars) d'Urbigny, '45, pp. 159, 190.

TREMOCTOPUS.

Tremoctopus delle Chiaje, '29, 1lates 70, 71.

9. Tremoctopus quoyanus.

Ortopus (Philonfris) quoyonus d'Orbigny, '35, p. 17, 1'late 2, Figs. 6-8.
J'hilom sis quoymuns F'érussac and d'Orbigny, '35, p. 90, l'oulpes, Plate 16, Figs. 6-8. I'late 23, Fig. 5.
Tremorlopus quoyanus Iloyle, '86, p. 70, I'late 13, Fig. 7.

Habitat. - Tropical Pacific ; September I, 1899 ; lat. $18^{\circ} 19^{\prime} \mathrm{N}$., long. $134^{\circ} 57^{\prime}$ W.; surface, 8 p .11. ; temperature, surface 76°; two specimens $\%$. [H. 151, 152.]

I refer these specimens to the above species with a little hesitation, because although the general appearance and relative lengths of the arms agree fairly well, there is a very definite pattern of conspicuous chromatophores on the bick of the head in both specimens, which does not appear either in d'Orbigny's description or figures. There are two large round chromatophores over each eye (compare Figure A), the anterior a little nearer the middle line than the posterior. Almost in the centre of these four is a smaller one, whilst two others nearer the middle line peep out from under the mantle-margin behind. On the arms are first three or four chromatophores in a single series, and then a double series almost up to the extremity.

Fig. A. Tremoctopus quoyanus? Dorsal view. $\times 2 \frac{1}{2}$. A q., Aquiferous pores.

10. Tremoctopus scalenus, ${ }^{1}$ sp. n.

(Plate 4, Figs. 6-9.)
Habitat. - Station 3388, off Cape Mala; March 9, I891; lat. $7^{\circ} 6^{\prime}$ N., long. $79^{\circ} 48^{\prime}$ W.; temperature, surface 73°; one specimen \&, No. 7963 . [II. 51.]

The Body is roughly ovoid in form, but so mutilated posteriorly that it is difficult to make out its original shape correctly. The posterior extremity appears, however, to have been bluntly pointed as shown in the restored outline (Plate 4, Fig. 7).

The Head is small, the sides being occupied entirely by the prominent eyes. The integument is so damaged that the aquiferous pores can no longer be marle out.

The Arms are very slender and of unequal length, the second pair enormously exceeding the others. The Suchers (Figs. 8, 9) are small, prominent, widely separate and alternating. There is no trace of hectocotylization.

Dimensions.

$$
\begin{aligned}
& \text { Length, total I20 } \\
& \text { End of body to mantle-margin } 15 \\
& \text { End of body to eye } 17 \\
& \text { Breadth of body } 9 \\
& \text { Breadth of head } 6.5 \\
& \text { Diameter of largest sucker } 0.75
\end{aligned}
$$

[^0]

This form is sufficiently distinguished by the elongation of the second pair of arms. The disparity in length between the two arms of the third pair is noticeable, - the more so since that of the right side has a truncated extremity, as if it had been originally still longer.

Family POLYPODIDAE, n. n.

Octopodidae Auctorum.

POLYPUS.

Polypus Schneider, !84, p. 116.
Octopus Lamarck, !99, p. 18.

- Polypus Hoyle, :01.

I have elsewhere (: 01) shown that in accordance with the rules of zoological nomenclature now generally adopted, Schneider's name must take precerlence of that proposed by Lamarck. It is no light matter to change a name that has been in daily use for just over a century, but I am so fully convincel that the only way of securing anything like uniformity in nomenclature is the rigid adherence to rules, that it seems to me lest to make the change and trust to its gradual adoption. I notice that this view has been accepted by no less an authority than Mr. Elgar A. Smith, of the British Museum (: 02).

11. Polypus occidentalis.

Octopus vulgaris var. a nericanus d'Orbigryy, '53, p. 14, Plate 1, Fig. 1. Octopus occidentulis Huyle, '86, ן. 77.

Hatitut. - Charles Island, Galapagos Islands, April 1, 1891 ; one specimen ¢, Nぃ. 7943. [H. 39.]

On my last visit to Cupemhaten I had the satisfaction of comparing this specimen with Steenstrup's type, in company with my friem the late Dr. H. J. Posselt, whose untinely death in July, 1890, ent short a career of unusual promise.
12. Polypus oculifer, sp. n.
(1) Ate 1, Fign. 3, 4.)

Matnitat. - Charles Islamd, Galapagos Islimds, March 31, 1891 ; one specimen \&, No. 79 18. [II. 40.]

The Body is ollong, rounded behind, very little longer than broad ; with a slight depression in the ventral median line. The mantle-opening extends less than halfway round the body, terminating some distance below and behind the eye. The siphon is small and bluntly terminated, and would reach only about one-third of the distance from the mantle-margin to the edge of the umbrella.

The Head is short, and, owing to the prominence of the eyes, consilerally wider than the body.

The Arms are sub-equal in length, the dorsal being somewhat shorter than the others: on the average they are three times as long as the body (measured to the eye). The umbrella is well developel between each pair of arms, though between the dorsal arms its radins is only 12 mm ., whilst leetween the ventral it is 18 mm . (measured from the mouth). The suckers are of average size, closely set and rather prominent : the three proximal ones form a single series. On the third left arm the eleventh sucker is absent: a similar loss seems to have affected the second right arm, but to be in process of repair, for a small sucker is growing in the space between the ninth and eleventh, which was probably formerly occupied by a much larger one. No hectocotylus is present.

The Surface is rough: the back is covered with granulations which become smaller on the sides and gradually vanish in the centre of the lower surface. These are also found on the external surface of the umbrella and on the proximal moiety of the arms. Very minute granulations occur also on the interual surface of the unbrella and the aljacent portions of the sides of the arms. There are no cirri and no papillae which are much larger than the others.

The Color (in spirit) is a dull violet, shading into ochre below. On the sides lighter patches are indistinctly seen separated from each other by darker veins. In front of and below each eye between the bases of the lateral arms is an eye-like spot, distant about 7 mm . from the eye and 8 to 11 mm . from the umbrella margin (Plate 4, Fig. 4). It has a pale whitish centre, surrounded by a dark ring; this in its turn is bounded by a broader area of the paler color of the skin, enclosed by a narrow dark line.

From the five species of Polypus，which have hitherto been described as hav－ ing an ocellar spot in front of the eye，the present form is easily distinguished as follows ：－

1．From P．pulcher（Brock）（＇87，p．607）by the rough surface of the body， combined with the absence of any specially prominent cirri．

2．From P．areolatus（De Haan）（Fér．\＆D＇Orb．＇35，p．65）by the dorsal （not the fourth arms being the shortest），by the smaller development of the arms，and by the centre of the eye－spot being light instead of dark．

3．From P．ocellatus（Appellöf）（＇86，p．8）by the relative shortness of the ventral arms，by the absence of a cirrus over the eye，by the ocellus being situated nearer to the eye than to the umbrella margin，and by its having a white centre．

4．From P ．membranaceus（Qnoy \＆Gaimard）（＇32，p．89）by the absence of the lateral weh on the body．

5．From P＇．bimaculatus（Verrill，＇83A，p．121）by the rough granular surface， with a distinct cirrus over each eye，and by the ocellar spot being of a purplish black all over without any paler centre or ring．

13．Polypus pusillus．

（Plate 4，Fig．5；Plate 5，Fig．1．）

Octopus pusillus Gould，＇52，p．478，Fig． 591. Octopus pusillus Tryon，＇79，p．112，Plate 31，Figs．32， 33. Octopus pusillus Ortmann，＇88，p．614，Plate 21，Fig． 1.

Station 3356，off Mariato Point ；February 23， 1891 ；lat． $7^{\circ} 9^{\prime} 30^{\prime \prime}$ N．，long． $81^{\circ} \curvearrowleft^{\prime} 31^{\prime \prime} \mathrm{W}$ ．， 546 fathoms；soft blue mud ；temperature，surface 83° ，bottom $40 .{ }^{\circ} 1$ ；one specimen 9 ，No． 795 2．［H．99．］

Station 335s，off Cape Mala；February 24， 1891 ；lat． $6^{\circ} 30^{\prime}$ N．，long． 81° $44^{\prime} \mathrm{W}$ ．， 535 fathoms；green sand；temperature，surface 83° ，bottom 40.02 ； one specimen \＆，No． 7954 ．［H．54．］

Station 3363，east of Cocos Island ；February 26， 1891 ；lat． $5^{\circ} 43^{\prime}$ N．，long． $85^{\circ} 501^{\circ} \mathbb{W} ., 978$ fathoms；white globigerina onze；temperature，surface 83° ， bothom $37 . \circ 5$ ；one specimen δ ，No． 7949 ．［H．3ヶ．］

Statiou 3117，off Acapulco ；A pril 11，1891；lat． $16^{\circ} 32^{\prime}$ N．，long． $99^{\circ} 45^{\prime}$ W．．， 493 futhoms ；green mul ；temperature，surface 82° ，buttom $40 .{ }^{\circ}$ ；one specimen ¢，パ๐，7950．［1I．37．］

Station 3H8，off Acapulen：April 11， 1891 ；lat． $16^{\circ} 33^{\prime} \mathrm{N} .$, long． 99° $52^{\prime} 30^{\prime \prime} \mathrm{W}^{+}$．，c60 fathoms；brown samd，black sp．：temperature，surface 82° ， bottom 390° ；nue specimen \＆，N゙o． 7953 ．［H．43］

It is not withont hesitation that I refer all these specimens to the above specins．Gonld＇s description leaves something to be desired in the matter of fulne a and precision，but the most emspicuous character（the larye ghobular eye4）is shared liy them ；thry also agree in the size of the umbrella and in the
smooth surface. The arms are given by Gould as being in order of length, 1, $2,3,4$; but it would appear from his figure that there is no great disparity between them and that they might with propriety be termed sulh-equal. It may further be remarked, in this connection, that in Gould's specimen the arms were contorted by the contraction of the mantle, under which circumstances accurate measurements are very difficult. In all these from the "Albatross" Expedition the arms are sub-equal; in some one is a tritle longer, in others another. In the male specimen (No. 7949), in which the total length is 8.5 cm . and that of the longest arms 6.5 cm ., the hectocotylized arm is only 4.5 cm . long and the modified extremity only 4 mm . This is of the usual form; the centre of the spoon-shaped portion forms a rounded elevation without any transverse ribs (Plate 4, Fig. 5). The specimen numbered 7950 differs from the last (7949) in the paler dull-gray color, but this is possibly due to some difference in the mode of preservation. The borly is distended and wrinkled, and much of the epidermis is stripped from the arms. The proximal four suckers are in two rows, not in one, but I am not at all sure of the value of this character.

The rallula presents a noteworthy character in the way in which the lateral denticles of the median tonth occupy successively higher positions as we pass backwards in the radula. There is thus produced a serial repetition which is completed in about five teeth (Plate 5, Fig. 1).

Specimen No. 7954 is small (about 4.5 cm . in total length), but it seems to me also to belong to this species. It is a good deal more contracted and barder in consistency, and more ruddy in hue. The only difference on account of which I should be inclined to separate it is the existence of a very small pale wart above each eye, but it is so small and the skin is a good deal wrinkled round about, so that it appears to me too insignificant a character to outweigh the numerous points of resemblance.

14. Polypus tonganus ?

Octopus tonganus Moyle, '86, p. 83, Plate 8, Figs. 1, 2.

Habitat. - Pacific Ocean, between Columbia and Mexico; no more precise locality. Two specimens. No. 8040 . [H. 34, 35.]

The larger, a very flaceid and mutilated specimen, presents no characters hy which it can be distinguished from the species discoverel by the " (Challenere" at Tongatabu. The identification is a little meertain becanse the "Challenger" specimens were in a state of extreme contraction and the surface considerably injured by mutual pressure.

One specimen is about 20 cm . in total length, the other about 6 cm .

15. Polypus januarii.
 (Plate 5, Fig. 2.)

Octopus januarii IIoyle, '86, p. 97, Plate 7, Figs. 1-4.

Habitat. - Station 3371, off Cocos Island; March 1, 1891; lat. $5^{\circ} 26^{\prime} 20^{\prime \prime}$ N., long. $86^{\circ} 55^{\prime} \mathrm{W}$. , ito fathoms; globigerina ooze ; temperature, surface $82{ }^{\circ}$, bottom 39°; one specimen δ, No. 7944 . [H. 41.]

The body of this example was in a very rotten and disintegrated condition, and among the débris at the bottom of the bottle I found several spermatophores. A portion of the radula is figured in Plate 5, Fig. 2.

16. Polypus macropus? juv.

Octopus macropus Risso, '26, p. 3.
Octopus Cuvieru Ferussac and d'Orbigny, '35, Poulpes, Plate 4. Octopus inucropus Jatta, '96, p. 217.
Hubitut. - Arhno Atoll, Marshall Islands ; January 24-26, 1900 ; lat. about 7° N., long. about $171^{\circ} 30^{\prime} \mathrm{E}$. ; surface of the lagoon, electric light; one young specimen \%. [H. 111.]

This small specimen, unt quite 10 cm . in total length, is most likely the young of the widely distributed Polypus macropus (Risso), or possibly of an undescribed species nearly allied to it.

17. Polypus, sp. juv.

(Plate 5, Figs. 3-9.)
Mubitat. - Station 3353, off Cape Mala; February 23, 1891 ; lat. $7^{\circ} 6^{\prime} \mathrm{N}$. , long. $80^{\circ} 34^{\prime}$ W'., 695 fathoms; green mul ; temperature, surface $\tau 3^{\circ}$, bottom 39°; 22 specimens, immature; No. 7941. [H. 73-94.]

In the present instance a small shoal of young specimens would seem to have been captured in the trawl. They are guite immature, as may be seen from the fact that in some the yolk sac persists in the milst of the arms. I am not aware that specimens as large as these have been found leading a free existence with the yolk sac still mabsorbed. I have seen alvancel embryos of sipia and Lolign when artificially liberated swim freely and actively about, thongh I do not know how long they can survive.

The disposition of the suckers on the arms of these specimens is curious and interenting, for they are sometimes in one row, sometimes in two. In the majority of eases the proximal and the distal suckers are in a single row (Fig. 7), whilst a greater or smaller number in the middle of the arm are arragel hiserially (Fig. (i). There are, however, several cases in which the whole of the surkers are in a single seriea, nul these occur in specimens where other arms have the arrangement described alwoe. The di-position is often very irregular, enpecially where the miserial arrangement is changing to the
biscrial (Fig. 5). The question might arise whether these examples belong to the genus Moschites (Eledone), the uniserial being nornal and the biserial due to contraction, or whether they are a species of Polypus (Octopus) in which the uniserial arrangement is gralually becoming biserial. I have no hesitation in adopting the latter view, because the animals are undoubtedly young, as shown ly the presence of the yolk sac, and because, as I have elsewhere remarkel, ($86, \mathrm{p} .76$) the suckers in the genus Polypus are not, strictly speaking, in two rows, bnt in one zigzay row. I am not aware whether this point has been established by an examination of embryos, but the present series of young examples seems to indicate that the suckers are first furmed in a single series which press each other sideways so as to form two rows as they become more crowded.

It is quite impossible to decide as to the species to which these specimens belong. From the size to which they have attained before losing the yolk sac it is likely that they are the yomg of some large species, perhaps one hitherto undescribed. I give below a description, to facilitate the clearing up of this point at some future date.

The Bolly (Figs. 3, 4) is ovoil, distinctly longer than broad, and the ventral groove is well marked. The montle-opening is narrow, extending only about one-fifth round the body, and ending directly below the centre of the eye. The siphon is tapering and extends from one-third to halfway to the umbrella margin, aceording to its state of contraction.

The Head is short and narrow, distinctly narrower than the body, and the eyes are round, black, and prominent.

The Arms are sub-equal and conical, tapering to blunt extremities. They are about equal in length to the head and body together ; romm in section except for the projection of the suckers. The umbellu extends about one-third up the arms. The suckers are small and closely set, and the arrangement varies between a biserial and a miserial disposition as above described.

The Surface of the dorsal half of the body, head and arms, is finely granular, the inferior hall smonth.

The Mantle is attached to the middle line ventrally by a broad ligament, 4 mm . wile, close to its free border. The ellge of the mantle is turned over and thickened internally just within the free borter so as to form a kind of ridge, which fits into a corresponding hollow in the base of the siphon (Fig. S); this arrangement no doubt serves to insure the complete elosure of the uooth of the mantle when water is being ejected throush the fummel.

The Riculula was extracted from one of the specimens and is figured on Plate 5, Fig. 9. In the bending of the ontermost teeth and the reemrving of the parts of the inner laterals it seems to present signs of incomplete development. The centrals have a broud median cusp, tapering to an acute point, and on either side are rudiments of a small lateral cusp. The first and second literuls are triangular and pointed: the third laterals very lone and slender and bhunty pointer. The irregular bending shown in the drawing is not, I think, a natural condition.

Dimensions of Fiyurel Specimen.

mm.
Length, total in_{7}
End of body to eye 12
Breadth of body 14
Eye to edge of umbrella, dorsally 10
Mantle-margin umbrella, ventrally 6
Diameter of largest sucker 0.6
Right. Left.
Length of first arm ${ }^{1}$. $25 ~ 25$
Length of second arm 2323
Length of third arm (about) 2222
Length of fourth arm 2020

18. Polypus, sp.

Habitat. - Papiete, Tahiti ; on the reefs; November 14, 1899 ; one young specimen. [II. 146.]

A young Octopus, 11 mm . in total length, with a sbort bursiform body and sulferqual arms, up which the umbrella extends for a distance of about 1 mm . The body and umbiella are liberally besprinkled with minute brown chromatophores; there is a single row of large pale red chromatophores along the outer aspect of each arm and there is a single similar one above each eye.

19. Polypus, sp.

Italritut.-Arhno Atoll, Marshall Islands; Jamary 24-27, 1900; surface lagom, electric light; three yomig specimens. [H. 112, 113, 121.]

These specimens are not specifically determinable; their most prominent characteristics are that the arms are sub-equal, the laterals being slightly larger than the dusaal or ventral. Each arm has on its outer surfice a double row of chromatophores, which are small and black on the proximal thirl, then largev and more reddish in tint. There is also a pateh of pale reddish chromatophores between the eyes and on the anterior part of the dorsal sufface. The total length is 20) man., and the arms about 10 mm ., measured from a point just in front of the eye.

20. Polypus, ep .

Huhitat. - Makatea Island, Piumotu Arehipelago; October 6, 1899 ; shore ; one young specimen. [II. 125.]

Makemo Whan, l’amotn Arehipelago; October 19 or 20, 1809 ; laroon ; one yonng sprecimen. [H. 124.]

This smatl Octopus, memsuring about 3 cm . in total length, has mo very striking characteristics, mul in view of the inadequacy of our knowledge of

[^1]the forms from these islands it seems useless to attempt to affix a specific name to it. The specimen from Makemo Island is a little larger, but has become dried and shrivelled so that its determination is even more uncestain.

MOSCHITES.

Moschites Schneider, !84, p. 118. Elerlone Leach, '17, p. 187. Moschites Hoyle, :01.

21. Moschites rotunda.

Eledone rotundu Hoyle, '86, p. 104, Plate 8, Figs. 4-6.
Habitat. - Station 3398, off Cape San Francisco ; March 23, 1891; lat. $1{ }^{\circ} 7^{\prime}$ N., long. $80^{\circ} 21^{\prime}$ W., 1573 fathoms; green ooze; temperature, surface 84°, bottom 36°; one specimen 9, No. 7951. [H. 44.]

With some little hesitation I regard this little species as the young of a species discovered by H. M. S. "Challenger" in the Pacific and Southern Oceans. The only points of difference are : (1) there is a shallow depression in the middle line below, (2) the mantle-opening terminates immediately below the eye, (3) the umbrella is proportionally better developed, and (4) the eyes are comparatively larger. Some of these are known to be characteristics of youth, and I do not think that they justify me in creatiug a new species for what is undoubtedly a young specimen.

22. Moschites verrucosa.

Eledone verrucosa Verrill, '81a, p. 105, Plates 5, 6.

 Eledone verrucosa Hoyle, '86, p. 104.Habitat. - Station 3393, off Cape Mala ; March 10, 1891 ; lat. $7^{\circ} 155^{\prime}$ N., long. $79^{\circ} 36^{\prime} \mathrm{W}$., 1020 fathoms; green mul ; temperature, surface 74°, bottom $36 .{ }^{\circ} 8$; three specimens q, two badly macerated, No. 7940. [H. 95-97.]

The only one of these specimens which was in reasonably good condition agrees very well with Verrill's description. The eyes are rather more swollen than in his figure, and the tubereles covering them are uniform in size. Verrill states that in his female they were smaller than in the male, and as the present example is only one-third the size of his, this may probably be due to incomplete development.

ELEDONELLA.
Eledonella Verrill, '84, p. 144, Plate 32, Fig. 2.

23. Eledonella diaphana.

(Plate $\overline{\text { B }}$, Fig. 11.)
Japetella diaphana झoyle, '85 д, p. 232.
Eledonella diaphana Hoyle, '86, p. 107, Plate 9, Figs. 3-6.
Hıbitat. - Station 3366, east of Galapagos Islands; February 27, 1891; lat. $5^{\circ} 30^{\prime} \mathrm{N}$., long. $86^{\circ} 45^{\prime} \mathrm{W} ., 1067$ fathoms; yellow globigerina ooze ; temperature, surface 84°, botlum $37 .{ }^{\circ} 0$; one specimen \circ, No. 7946 . [H. 99.]
Station 3415, S. E. of Acapulco ; April 10, 1891 ; lat. $14^{\circ} 46^{\prime}$ N., long. 95° 40^{\prime} W., 1879 fathoms ; brown mud, globigerina onze; temperature, surface 833°, bottom $36 .{ }^{\circ} 0$; one specimen ㅇ, No. 7960 A . [H. 101.]

Station 3420 , off Acapulco; A 1 nil 12, 1891 ; lat. $16^{\circ} 46^{\prime}$ N., long. 100° $8^{\prime} 20^{\prime \prime} \mathrm{W}$., 664 fathoms ; dark green mud ; temperature, surface, 82°, bottom $39 .{ }^{\circ} 6$; one specimen, No. $794 \overline{7}$. [H. 100.]

Station 220, ahout 12 miles sonthwest of west point of Kwajalong Island, Marshall Arehipelago ; Jumary 16, 1900 ; lat. $8^{\circ} 33^{\prime}$ N., long. $167^{\circ} 37^{\prime}$ E.; temperature, surface 82°, bottom 35°, 1897 fathoms, globigerina mud; one young specimen. [H. 129.]

These specimens differ only in insignificant characters from the type in the "Challenger "collection. The ams are proportionally a little shorter, but the gencral appearance, the furm and disposition of the chromatophores, and the shape of the suckers are identical. There is no valve in the funnel, and as this character was recorlet as doultful in the case of the "Challenger " specimen I hate re-examined this latter with care, and feel now convinced that the appearance of a salve is due to the tip of the fumel oran (the pad alluded to in the "Challenger" Report, P .107), having become separated from the wall of the funnel.

The specimens were all immature, so that no sex indications were found in the viscera, but I conchude they are females becanse Verrill's example of E. mymnea, which was no lamer than the smallest of them, already showed the enlared suckers on the thirl pair of arms which are believel to be characterixtic of males.

Our of the specimens (No. 7960) shows the fumel organ very well (Plate 5, Firis. 11). It consists mainly of two prads hroader hehind than in front, where they are prolonged into a kind of stalk and mearly meet, hut are separated by the tip of a much smaller pal lying in the midlle line amd directed lackwards. This matian purtion springs gralually from the dorsal wall of the fumel without any elear line of demarcation.

The young specimen [H. 129] shows a noticeable resemblance in general appearance to the Octopus renustus of Rang ('37, p. 66, Plate 93). This authority, however, figures the suckers in two rows, though he adds that they are "assez peu apparentes." The resemblance is in any case sufficiently strong to raise the interesting question whether the small pelagic forms described as Octopus brevipes Férussac and d'Orbigny ('35, p. 22), O. capensis and O. dubius Eydoux and Souleyet ('52) may not be allied to Eledonella.

JAPETELLA.

Japetella IIoyle, '85A, p. 231 ; '86, p. 109.

24. Japetella prismatica.

(Plate 5, Figs. 10, 12.)
Jupetelia prisinatica IIoyle, '85 A, p. 231; '86, p. 109, Plate 9, Figs. 1, 2.
Habitat. - Station 3414, off Tehuantepec; April 8, 1891 ; lat. $10^{\circ} 14^{\prime}$ N. long. $96^{\circ} 28^{\prime}$ W., 2232 fathoms ; green mud ; temperature, surface 82°, bottom $35 .{ }^{\circ} 8$; one specimen $\widehat{0}$, No. 7945 B. [H. 36.]

I have compared this specimen with the type in the British Museum (Natural History) and have satisfied myself that both belong to the same species : there are, however, one or two points which call for special notice.

In the "Challenger" Report it is stated (1 . 108) that there is a valve in the siphon, but I have ascertained by comparison of this example with the type that I was misled (as in the case of Elelonella diaphana) by the tip of the funnel-organ having become detached, prolucing a deceptive appearance of a valve. The form of the funnel-organ in the "Challenger" specimen is shown in Plate 5, Fig. 12.

The other point relates to the median septum in the branchial cavity. In the "Challenger" specimen such a septum appeared to be absent, but in the present example there is a narrow delicate ridge running along the median ventral line of the interior of the mantle, which may be the remains of such a septum, though I can find no trace of its attachment to the risceral sac. Led by this discovery, I have re-examined the "Challenger" type and find there also traces of a similar ridge on the inmer surface of the mantle. It seens, therefore, quite within the bounds of possibility that specimens in a better state of preservation might show a complete septim, in which case there would be no further cause for separating the genera Eledonella and Japetella. Although I think it very probable that in the future these two genera will be united, I think it advisable pending further evidence to retain them as distinct. The suckers on the thind pair of arms of the "Albatross" specimen are much enlarged (Plate 5, Fig. 10), exactly as figrured by Verrill ("84, Plate 32, Fig. 2) in the case of Eledonella pygmaea. This is almost certainly a form of hectocotylization and is an additional point of similarity between these two genera.

Family SEPIOLIDAE.

EUPRYMNA.

Euprymna Steenstrup, '87, p. 60 (20).

25. Euprymna stenodactyla.

Sepiola stenodactyla Grant, '33, p. 42.
Sepiola stenodactyla Grant, '33 A, p. 77, Plate 11, Figs. 1, 2.
Euprymna sthenodactyla Steenstrup, '87, p. 66 (20) ; '87 A, p. 89 (43).
Inioteuthis stenodactyla Brazier, '92, p. 9.
Sepiola stenodactyla Joubin, : 02, p. 92.
Habitut. - South Pacific Ocean, near Rangiroa ; September 24, 1899; about lat. $15^{\circ} \mathrm{S}$. , long. $148^{\circ} \mathrm{W}$.; surface tow net, 8 P. s., one specimen. [H. 126.]

Funafuti Island; December 24, 1899; shore, taken with the seine; one specimen. [H. 128.]
Gilbert Islands about one mile off Tarawa Island; January 2, 1900; surface, electric light ; one specimen. [H. 137.]

Marshall Islands, Arhno Atoll ; January 24-26, 1900; surface of lagoon, electric light; seven specimens. [H. 114-120.]

Same locality ; January 27, 1900 ; two specimens. [II. 122, 123.]
The Body is thick and rounded; the fins are round, nearly circular, and rather more than half the body in length; there is a notch at the anterior but not at the posterior origin from the mantle; a broad ligament unites the mantle with the head in the nuchal region; the ar-

Fig. B. Eurrymna stenodactyla. d. Dorsal arms. $\times 2\}$. ticulation between the mantle and the siphon consists of an elongated ridge and groove as usual in the family; the siphon is conical and reaches just to the gap between the ventral arms.

The Hearl is very broad and the eyes very large and prominent.

The Arins are in orler of length 3,2 , $1=4$; rather thick, rounded, and tapering, with no trace of keel, or protective membrane; the suckers are, speaking generally, in four rows, though the arrangement is here and there a little irregular ; those at the root and tip are in two rows, and there appear to be one or two sets of three between; they are spheroidal, oblique, and of the type usual in Sieprolu. In the male the suckers are somewhat differently disposed; in the first right arm (Fig. B) the two outer rows of suckers are a little larger than the inner,
and those of the ventral row are again a little larger than those of the dorsal in the middle of the arm; the first left arm is a very little shorter than its fellow and deciledly thieker; the suckers are first in two and afterwards in four rows, and extend about halfway up the arm, where they are succeeded by a number of stont papillae in two or three rows (Fig. C) ; these thicken towards the tip, and do not bear suckers, but each has in its rounded top a slit, much resembling a mouth, closed by two lips, one thicker than the other; they diminish rapidly towards the tip of the arm. The nodified papillae abont halfway up figured by Appellöf ('86, Plate 2, Fig. 16), in Inioteuth is morsei were not seen, though there were two stalks from which suckers had fallen in this position. In the second arms the suckers of the outer rows are a little larger than those of

Fig.C. Euprymиa stenodactyla.
Modified suckers of left dorsal arm. $\times 8$. the inner. In the third pair not only are the two outer rows enlarged, but four or five in the ventral row are much larger than the rest (Fig. D). In the fourth pair the outer rows are again somewhat larger than the inner, and there are two or three suckers of the dorsal series and four or five in the ventral much enlarged, though not to so great an extent as in the third pair. The web between the third and fourth arms extends up abont one-fourth of their length; it is very small between the other pairs of arms and absent between the rentral pair.

The Tentacles are about as long as the arms; there is a groove in the inner aspect of their stem, the dorsal margin of which is elevated into a kind of web or deep keel towards the club, which bends round in a hook; it is slightly expanded and of a velvety appearance, owing to the numerous small suckers.

Fig. D. Euprymna stenodactyla. Third right arm. $\times 2 \frac{1}{2}$.

The Color is yellowish gray, with very conspicuous chromatophores, especially large on the back of the head and the arms. In the latter there is a row of transversely elongated oval ehromatophores up the outer surface, as figured by Grant, and a small round one on the pedicle of each sucker of the two outer rows. There is also a row of transversely placed oval ones on the outer side of the tentacular stem.

Dimensions of H. 114.
mm.
Length, total 33
Find of body to mantle-margin 11.5
Breadth of body 12
Breadth of head 12
Breadth of mehal ligament 8
Centre of eye to edge of umbrella, hetween second and third arms 8
Length of fin 7
Breadth across Loth fins 21

The following discrepancies between the above account and that given by Grant seem worth mentioning. The arms are a little larger than would correspond with the measurements given in Grant's text, but in the figure the arms are shown as larger than stated in the text. The tentacle is much longer in Grant's figure and description than in the "Albatross" specimens, but this organ varies so much in this respect both during life and after death according to preservation that a difference in this respect can hardly invalidate an identification based on so many resemblances. The head is sunk back into the mantle-cavity and hence the waist-like constriction behind the eyes, shown in Grant's figure, does not appear; this again is merely a matter of contraction of the tissues.

The nomenclature of this interesting form clemands, perhaps, a few words of explanation. The generic name Euprymna was first proposed by Steenstrup in the Latin summary appended to his paper on the "Mediterranean Species of Sepiola" ("87). Speaking of the short-finned forms ("species brevipinnes") he says that they approach the typical species of the genus Inioteuthis Verrill, "dum ab atypicis speciebus ejusdem greneris (In. Morsei, sthenodactyla, bursa, cet. propter connexionem latam capitis cum pallio et tentaculorum miram formationem ad genus novmm, Euprymnam mihi dictum, referendis) valde recelunt."

In a subsequent paper ($87 \mathrm{~A}, \mathrm{p} .88$ [42]) he recurs to the same subject as follows: "The other Japanese Sepiolil, In. Morsei Verr., only provisionally referred by Professor Verrill to the genus Inioteuthis, only known to him in the shape of a single female example, is the most northeasterly form yet discovered of a series of very plump, thick-set Sepiolas, which seem to occur in all zones of the Inlian Ocean and South Sea, and of which the most southwesterly representative yet known to me is the Sepiola sthenodactyla from Manritios, described and depicterl more than lifty years acro (1833) by Prof. Robert Grant in the Trans. Zuol. Suciety, Vol. 1. All the individuals of this thick-set group of Sepiolas are characterizel by a very broad ligament between the mantle and head, as has heen mentinned by Verrill in the case of In. Morsei, Verr., aml as is recombal for this species or one closely allied to it by W. Ioyle (Challenger Expul. ('aphalop., Plate XLV., F'ig. 1) ant ly Appellöf (Op. cit., ['86] Pate II.), sul as is cunally strongly emphasized buth in text and figure hy Robert (irant in the case of sipnole sthenolactyla (Plate 11, Fig. 1), they are especially remarkable for the stout, swollen tentacular clubs, which have a velvety appearamee on aceomat of the hair-like thinness of the stalks of the suckerw, and the (almost or fuite) rudimentary condition of the suckers themselves as fionred by Huyle in the case of In. bursu, l'feft., Plate XIV., Figrs. 4-8.

They are all also very remarkable for the shape of the ink-sac, which is broader and with larger auricular processes than even in Sep. Rondeletii Leach, or Sep. atlantica d'Orbigny. On the whole they constitute, in my opinion, a special and well-marked generic type, which on account of the habit of borly mentioned above I have called Euprymna, and of whose natural character I am the more convinced, inasmuch as I find in all the males of the group the sexual arm modified in the way represented by Mr. Appellöf (loc. cit.) in In. Morsei."

Later on it is stated that Euprymno is the Latinized feminine of the adjective cün $\rho \nu \mu \nu o s,-o \nu$ and has reference to short, stout body (stern, $\left.\pi \rho v_{\mu} \mu \eta\right)$.

Dr. Ortmann ('88, p. 647) was presumably not acquainted with this paper of Professor Steenstrup when in 1888 he published his memoir on the Japanese Cephalopoda; it had indeed only appeared in the previous year. Dr. Ortmam points out a number of characters in which Inioteuthis japonica differs from I. morsei, and concludes by pointing ont the necessity of creating a new genus for the latter, unless I. japonica is united with Scpiola, in which case the name Inioteuthis might be retained for 1. morsei and its allies. Against this it may be pointed out that I. japonica was expressly made by Terrill the type of his genus, and as the name Euprymna had been proposed and defined by Steenstrup, it seems proper to accept it, whatever may be the fate of Inioteuthis as against Sepiola.

It is worthy of notice that Professor Stcenstrup consistently spells the specific name of this species "sthenodactyla," not " stenodactyla." In a note appender to No. 7 of his "Notr Teuthologice" ('87A, p. 74 [120]), he explains this by the statement that " Grant says expressly that he called the species thus on account of the stoutness and strength of the arms, and that, therefore, it must be in consequence of a typographical error that 'stenodactyla,' meaning thin or small-armed, has crept into the text and plate." If this were all, it would no doubt be desirable to correct the faulty spelling and write the word as Steenstrup suggests, but the matter is not quite so simple. On turning to Grant's memoir ('33 A , p. 85) we find these words: "The arms are proportionally much thicker and shorter than in Sep. vulgaris. . . . From this contracterl form of the cephalic arms, by which it differs so much from the European species, I have termed it Sep. stenodactyla," and in the earlier note ('33), where the first mention of the species occurs, the name is said to be suggested by "the comparative shortness of its members." $\sigma \tau$ c⿻ós would, of course, be a correct translation for " contracted," but the contraction referred to seems to have been in the matter of length and not breadth, and it is, to say the least of it, doubtful whether $\sigma \tau \epsilon \nu$ ós can be used in that sense. For myself I have little donbt that Grant meant to write stcnodactyla, when he would have done better to use sthenodactyla, but I do not see that anything is gained by making such a "conjectural emendation."

INCERTAE SEDIS.

CIRROBRACHIUM, gen. n.

In the absence of a complete specimen, the only diagnostic character which can be assigned to this new genus is the presence of a row of filaments along the outer or ventral side of each arm, except those of the fourth pair.

26. Cirrobrachium filiferum, sp. n.

Habitat. - Station 17; equatorial Pacific Ocean, north of the Marquesas Islands; September 10,1890 ; lat. $0^{\circ} 50^{\prime}$ N., long. $137^{\circ} 54^{\prime} \mathrm{W}$.; trawl, 2463 fathoms; temperature, surface, 79°; one fragmentary specimen. [H. 130.]

The specimen upon which this new species, the type of a new genus, is based consists unfortunately only of the head and arms, which have suffered denulation of the integument here and there. The suckers are, however, almost all intact, as also the characteristic filaments which spring from besile them. A description as complete as I have been able to prepare of the specimen is given below.

The Head, so far as can be seen, was flattened on the dorsal side, and slightly excavated for the funnel lelow. The eyes are large and prominent, and oceupy the whole of the lateral surface of the head. The eyelids have disappeared, but there can be little doubt that they were of the type common to the Oegopsida.

Fig. E. Cirrobranchium filiferum. I'ortion of third right arm. $\times 5$. A few patches of the integument remain, which are thickly covered with bright pink chromatophores.

The Arms are slender, rounded, and tapering, and bear, besides the suckers, a series of long slender filaments which form the characteristic pecnliarity of the genus. The first pair are about 15 mm . in length, measuring from the front edge of the eye. The suckers are in two rows, small and stalked, and do not show any trace of a modification into hooks. Immerliately to the proximal side of each sucker is a dull pink chromatophore. Close to the base of each sucker of the ventral row arises nne of the filaments above mentionerl. Those springiug from the proximal suckers are about twice the diameter of the arm in length; they gralually increase to the midalle of the arm, where their length is three or four times the thickness of the arm ; they then diminish towarls the tip, where they finally disappear. The arms of the second pair are about one-fourth longer than the first. The arrangement of the suckers and filaments is the
same, but the filaments are considerably longer. The arms of the third pair are the. largest of all, and were probably twice as long as the first pair; but as they have both been broken off it is impossible to say exactly what was their original length. The filaments in this case are much longer, and in the centre their length is fully four times the diameter of the arm. On the outer aspect of the proximal half of these arms is a distinct keel. The arms of the fourth pair are about as long as the first. They have two rows of suckers, but none of the filaments just described; only a small lappet arising opposite each sucker of the inner series. On the outer aspect of each of these arms is a broad membrane, which stretches outside the root of the tentacle across to the root of the third arm and passes nearly to its tip, becoming gradually narrower as it proceels. Here and there between the filaments may be seen the remains of a very delicate membrane which seems to have united them, but it is impossible to say how far along the arm this membrane may have extended, or bow far it may have reached up the filaments. The only structure with which I am acquainted comparable to this is the series of lappets connected by a membrane, which has been above descrileed in the ease of Abraliopsis (see pp. 37, 3s, postea), or the membrane supported by ribs seen in some forms of Ommastrephes.

The suckers are helmet-shaperl, mounted on short tapering peduncles, and with smooth, horny rings.
It is impossible to form any correct idea of the family to which this interesting form should be referred.

Family LOLIGINIDAE.

Loligidae d'Orb., in : Férussac and d'Orbigny, '35, p. 297.
Loliginei Steenstrup, '61, p. 69 (1).
Loliginei Steenstrup, 81, p. 28.

LOLIGO.

Loligo Schneider, !84, p. 110.
Loligo Lamarck, !99, p. 10 (pars).

27. Loligo diomedeae, sp. n.

(Plate 5, Fig. 13; Plate G, Figs. 1-\%.)
Habitat. - Station 3422, off Acapulco; April 12, 1891 : lat. $16^{\circ} 47^{\prime \prime} 30^{\prime \prime}$ N ., long. $99^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{W}$., 141 fathoms; green mud ; temperature, surface, 83°, bottom $53 .{ }^{\circ}$; one specimen \&, No. 7958 . [H. 46.]
The Body is comparatively long, and cylimdrieal for more than half its length, tapering rather rapilly io the posterior extremity. The fin is lecidelly. short for a Loligo, broader than long, slightly notehed at its anterior points of
attachment to the body and with rounded lateral boundaries. The mantlemargin has a blunt muchal prominence and is slightly excavated ventrally.

The Head presents no character calling for a special remark.
The Arms are unerqual, the order of length being $4,3,2,1$; the first are slender and have a very distinct dorsal keel; the second have a well-marked ventro-lateral angle ; the third are broad and flattened and with a distinct web externally; the fourth are nearly as stout as the second, and have the sides, especially that turned towards the tentacle, excavated into a groore. The suckers (Plate 6, Figs. 1, 2) are of the usual form and arrangement; the hormy ring has about 20 blunt teeth, of which about 12 are in the proximal and 8 in the distal moiety. The buccal membrane has seven points, which bear one or two very minute suckers (Plate 6, Fig. 7) ; between the rentral points is a papilla for the reception of spermatophores.

The Tentacle is small and slender ; the club is of the usual type and about one-third the length of the tentacle; in the centre are eight or ten large suckers (Plate 6, Fig. 3), about double the lateral ones in diameter; there are about half-a-dozen proximal suckers and a larger number in four rows distally gradually diminishing in size towarls the tip. The horny ring in the six or eight largest suckers has five blunt square-cut teeth on its distal margin, and in the lateral and terminal suckers about eight acute teeth separated by intervals broader than themselves on the distal semi-circumference (Plate 6, Fig. 5). The Gladius has not been extracted.

Dimensions.

This species differs from L. japonica (Hoyle, '86, p. 15\%) in the comparatively small length of the fin and in the fact that the teeth in the large tentacular suckers have rather mure space between them. It also resembles L. gathi in many particulars, but the teeth of the large tentacular suckers are blunt and square instead of with sharp angles of about 60°.

SEPIOTEUTHIS.

Sepioteuthis Blainville, '24.

28. Sepioteuthis lunulata.

Sepioteuthis lunulata Quoy \& Gaimard, '32, p. 74, Plate 3, Figs. 8-13.
Sepioteuthis lumulata Férussac \& d'Orbigny, '35, p. 300, Sepioteuthes, Plate 3, Fig. 1, Plate 6, Figs. 1-8 [1839].
Habitat. - Jaluit, Marshall Islands ; January 13, 1900 ; shore ; six specimens, 3 §, 3 ¢ . [H. 104-109.]

These specimens present resemblances both to S. lunulata and S. mauritiana. The former of these presents in the figures given by Quoy \& Gaimard a series of dark circular spots on each fin, and in three of the specimens taken by the "Albatross" similar spots, though not so regular either in form or distribution, are found. On the other three they cannot be made out. The six specimens, nevertheless, seem to me all referable to one species, and I can ouly conclude that this must vary a good deal in the matter of coloration, as indeed is expressly stated by Quoy \& Gaimard; for in the case of S. guineensis, which is regarded, and no doubt rightly, by d'Orbigny, as being the same species, the spots were not noticed until after it had been preserved.

Turning to other characters, the horny rings of the suckers in the arms and tentacles resemble very clearly the figures given by d'Orbigny of S. lumuluta, though the teeth are rather fewer than in that species and much less mumerous than in S. mauritiana. On the other hand as regards the fin, the breadth is 17 per cent of the length in S. lunulata, 15 per cent in S. maurituena, and 12.5 per cent in the "Albatross" examples.

To sum up, then, in the suckers the present form resembles S. lumulata, in the fin it is more like S. mauritiana, whilst in the coloration half the specimens show a very distinct likeness to S. lunulata, whilst the others might be S. mauritiuna. On the whole I have thonght it best to refer these examples with some doubt to S. lunuluta. It is, however, possible that S. lunulata and S. mauritiana may be only varieties of one widely distributed species.

The tip of the tentacle shows the little spoon-shaped group of suckers to which attention was first called by Goodrich ('96, p. 6).

Family OMLMASTREfilidaE.

Ommastrephini Steenstrup, '61, p. 1. Ommastrephidae Gill, '71, p. 1.

OMMASTREPHES.

29. Ommastrephes sp.?

Habitat. - Station 14, north of the Marynesas Islands ; September 7, 1800 : lat. $6^{\circ} 41^{\prime} \mathrm{N}$. , long. $137^{\circ} \mathrm{W}$., 150 fathoms to surface; temperature, surface, 82°; three specimens. [1I. 133, 141, 142.]

These specimens, though the mantle-length is only some 5 mm ., show dis tinctly the characteristic form of the articulation with the base of the siphon.

SYMPLECTOTEUTHIS.

Symplectoteuthis Pfeffer, : 00, pp. 178, 180.

This genus has recently been created by Dr. Pfeffer for the reception of the species named below, on account of the fusion of the mantle with the base of the funnel on either sile.

30. Symplectoteuthis oualaniensis.

Loligo oualaniensis Lesson, '29, p. 240, Plate 1, Fig. 1.
Onmastrephes oualaniensis d'Orb., in: Férussac and d'Orbigny, '35, p. 351, Calmars, Plates 3, 21 ; Ommastrephes, Plate 1, Figs. 14, 15.
Ommatostrephes oualaniensis Steenstrup, '80, pp. 76, 84.
Ommastrephes oualaniensis Hoyle, '86, p. 162.
Symplectoteuthis oualaniensis Pfeffer, :00, p. 180.
Habitat. - Station 3363, east of Cocos Island (surface tow-net) : February 26, 1891 ; lat. $5^{\circ} 43^{\prime} \mathrm{N}$., long. $85^{\circ} 50^{\prime} \mathrm{W}$., 978

Fig. F. Funnel groove of Symplectoteuthis oualaniensis. fathoms ; white ghlobigerina ooze ; temperature, surface 83°, bottom $37 .{ }^{\circ} 5$; one specimen. [H. 5.3.]
The funnel groove (see Figure F) somewhat resembles that figured by Steenstrup ($80, \mathrm{p} .81$) for Torlarorles sugittatus and Ommastrephes pacificus (80 , P. 79, Figs 4, 5) except that the area occupied hy the cutancons folds is very much narrower. In this respect it differs from the original drawing by Lesson ('29, Plate 1, Fig. 2) of his L. oualaniensis, where the funnel groove is shown as though it were striated all over.

RHYNCHOTEUTHIS.

31. Rhynchoteuthis chuni, sp. n

Whynchotenthis Chun (:03).
Hubitat. - Station 14; Pacific Ocean, north of the Marquesas Islands; September T, 1899 ; lat. $6^{\circ}+1^{\prime}$ N., long. $137^{\circ} \mathrm{W}$. ; temperature, surface, 8.2°; taken at the surfare ; one young specimen. [11. 134.]

Professor Chun's re-disenvery of the curious immature form described by Souleyet (52,1 1. 17, Plate 1, Figs. 15-21) is of extreme interest, and although
the specimen which has come into my hands differs somewhat from those previonsly figured, it agrees in the Ommastrephes-like form of the connection between the mantle and siphon and the fusion of the tentacles. The main difference is that the tentacles are small and short and are uniten only for a short distance just above the mouth (see Figure G), whilst in the others these organs are much elongated, are thicker than the arms, and constitute a stout, flexible proboscis, which has suggested the generic name.

As this form is clearly specifically different from those figured by Professor Chun, I have ventured to name it in his honor.

Family Bathyteuthidae.

Bathyteuthidae Pfeffer, :00, pp. 152, 171.

BATHYTEUTHIS.

Bathytenthis Hoyle, '85, p. 272.
Benthoteuthis Verrill, '85, p. 401.

Fig. G. Rhynchotenthis, sp. Showing the fused tentacles and the siphonal cartilage; drawn by A. D. Darbishire.

32. Bathyteuthis abyssicola.

(Plate 1, Fig. 2.)
Bathytenthis abyssicola IIoyle, '85, p. 272, Fig. 108; '86, p. 168.
Habitat. - Station 3358; off Cape Mala ; Fehruary 24, 1891 ; lat. $6^{\circ} 30^{\prime}$ N., long. $81^{\circ} 44^{\prime} \mathrm{W}$., 555 fathoms; temperature, surface, 83°, bottom $40 .^{\circ} 2$: green sand ; one specimen, No. 7967. [H. 52.]

Station 3388: off Cape Mala; March 9, 1891 ; lat. $7^{\circ} 6^{\prime}$ N., long. $79^{\circ} 45^{\prime}$ W.; 1168 fathoms; temperature, surface, 73°, buttom $36^{\circ} 2^{\prime}$; green globigerina ooze; one young specimen. [H. 533.]

A colored drawing (Plate 1, Fig. 2) was made when the animal was fresl, and is interesting as showing that the deep red color common to many deepsea Cephalopods fades only very slightly under the influence of alcohol, the specimen being now almost as dark in hue as the drawing. The mantle in this specimen was 23 mm . long, but it is not so prominent in the nuchal region as shown in the drawing. The head and arms also are fignred a little too large.
vol. xliti. - vo. 1

Family Mastigoteuthidae.

Mastigoteuthidae Verrill, '81 A, p. 100.

MASTIGOTEUTHIS.

Mastigoteuthis Verrill, '81 a, p. 100.

33. Mastigoteuthis dentata, sp. n.

(Plate 6, Figs. 8-11.)
Hebitat. - Station 3400; E. of Gillapagos Islands; March 27, 1891; lat. $0^{\circ} 36^{\prime} \mathrm{S}$., long. $86^{\circ} 46^{\prime} \mathrm{W} ., 1322$ fathoms; temperature, surface 81°, bottom 36°; light gray globigerina ooze ; one specimen \&, No. 7956. [H. 102.]

Station 3394; off Cape Mala; March 10, 1891 ; lat. $7^{\circ} 21^{\prime}$ Ň., long. $79^{\circ} 35^{\prime}$ W., 511 fathoms ; temperature, surface 73°, bottom $41 .^{\circ} 8$; dark green mud; one specimen δ, No. 7957 . [H. 45.]

This species differs from Mastigoteuthis agassizi (Verrill, ' 81 A, p. 100) in the fact that the horny rings in the suckers of the arms are furnished with teeth (Plate 6, Fig. 8), whereas in that species they are smonth.

It differs from M. levimana Lömberg ('97, p. 605) in the fact that the ventral arms are thicker and not thinner than the others and have the suckers normally disposed. It agrees with this, however, in the denticulation of the horny rind of the suckers. Lönnberg is mistaken when be says that the horny rings on the arms of the "Challenger" specimen had pointed teeth. The "Challenger" specimen was only a fragment of a tentacle and therefore rave no information regarding the suckers of the arms.

The two sexes show an interesting difference in the form and proportions of the boly and fin, the latter being two-thirds the length of the mantle in the male and only abont two-fifths in the female ; the bolly too is more conical in the former, more cylindrical in the latter. The absolute dimensions of the male are much smaller, but there is no evidence to show whether the specimens are full grown. One of Verrill's male specimens attained a length of 232 mm ., which is intermediate in size between the two examples bere deseriberl.

The generil arrangement of the organs seen on opening the mantle-carity is shown in Plate 6, Figne 10, 11.

Dimensions.

| | | Right. $^{\text {on }}$ | | | Left. | Right. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Left.

Family ONYCHOTEUTHIDAE.

Onychoteuthidue Gray, '47, p. 200.

ONYCHOTEUTHIS.

Onychoteuthis Liehtenstein, '18, p. 1591.

34. Onychoteuthis banksi.

Loligo banksii Leach, '17, p. 141.
Onychoteuthis bunksii d'Orb. and Fér., '35, p. 332, Onychot., Plates 1-5, 9, and 12 [1839].
Onychotenthis banksi Pfeffer, :00, p. 159.
Habitat. - Tropical Pacific Ocean ; September 6, 1899; lat. about 8° N., long. about $137^{\circ} \mathrm{W}$.; surface at night; one specimen. [H. 110.]

TELEOTEUTHIS.

Omykia Lesueur, '21, p. 98.
Teleoteuthis Verrill, '82, p. 70.

35. Teleoteuthis caribaea.

Onykia caribaea Lesneur, '21, p. 98, Plate 9, Figs. 1, 2 a-e.
Teleotenthis caribaea Verrill, '82, p. 70.
Telcoteuthis caribaca l'feffer, :00, p. 157.
Habitat. - Station 1, 320 miles from Point Conception; Angust 26, 1899; lat. $31^{\circ} 10^{\circ} \mathrm{N}$., long. $125^{\circ} \mathrm{W}$.; surface; temperature, surface, 63°; three specimens. [H. 148, 149, 150.]

Station 14, north of the Marquesas Islands; September 7 , 1899; lat. $6^{\circ} 41^{\prime}$ N., long. $137^{\circ} \mathrm{W}$.; surface ; temperature, surface 82°; two speeimens. [H. 131, 132.]

Dr. Pfeffer has confirmed the identification of these specimens, which are all very young, the largest measuring only 10 min. in length of mantle.

36. Onychoteuthid, gen. et sp.?

Hebitat. - Station 18, abont 75 miles north of the Marquesas Islands; September 13,1899 ; lat. $6^{\circ} 25^{\prime} \mathrm{S}$., long. $135^{\circ} 59^{\prime} \mathrm{W}$.; 400 fathoms to surface ; temperature, surface, 80°; one specimen. [H. 136]

Station 27, off Anna Maria Bay, Marquesas Islands; September 15, 1899 ; lat. $9^{\circ} 01^{\prime} \mathrm{S}$., $140^{\circ} 04^{\prime} \mathrm{W}$.; 320 fathoms to surface ; temperature, surface, 79°; one specimen. [H. 138.]

These two small specimens are probably both to be referred to the same species, though the one first mentioned is much shrivelled. They are almost certainly the young of one or other of the numerous hook-squils.

Family ENOPLOTEUTHIDAE.

Enoploteuthidae Pfeffer, :00, pp. 153, 163.

ABRALIOPSIS.

Abraliopsis Joubin, '96, pp. 32.

37. Abraliopsis hoylei.

(Plate 1, Fig. 3; Plate 8.)

Enoplotenthis hoylei l'feffer, '84, p. 17.
Aluruliopsis hoylei Joubin, '96, p. 33.
Ifulitut. - Station 337.5, off Cape San Francisco, Marel 4, 1891 ; lat. $2^{\circ} 34^{\prime}$ N「., long. $82^{\circ} 29^{\prime} \mathrm{W}^{\prime}$., 1201 fathoms; gray globigerina ooze ; temperature, surface 77°, lwitom $36 .{ }^{\circ} 6$, whe specimen δ, No. 7959 A . [H. 65.]

Station 335ㄹ, off Mariato Point, March 7, 1891 ; lat. $6^{\circ} 21^{\prime}$ N., long. 80° 41^{\prime} W., 1703 fathoms; green mul ; temperature, surface 75°, bottom 35.08 ; one sprecimen \&, No. т964. [II. 66.]

Station 3414, off Tchmantepee ("surface to 300 fathoms"), April 8, 1591 ; lat. $10^{\circ} 14^{\prime}$ N., lung. $916^{\circ} 2 n^{\prime} W$., 2232 fathoms; green mud; temperature, surfice sio, buttom 3.0.0s, wie specimen \& [H. (ii.]

Station $3415, \mathrm{~S}$. E. of Acapulco, April lo, 1891 ; lat. $14^{\circ} 46^{\circ}$ N., long. 99° $4!{ }^{\prime}$ W., 1899 fathons; lorown mul, ghobigerina onze ; temperature, surface 83°, 1x,tom 35°; one specimen $\delta, ~ N o, ~ 7960$]. [H. fis.]
'The female specimen from Stution 3414 is very well preserven, and I have an dombt alumt its being correetly referred to this spewes, for my friend Dr. I'foffer and I compared it tugether with the type specinen in the Hamburg Masemm. The only differene of any moment is that the tentacular chith is provided with three instead of four large hooks. The dark spots on either
side of the cartilage in the nuchal region are perceptible, though faint, a character which in this species differs from A. pfefferi Jouinin.

A colored figure of this individual from a sketch made on board whilst the animal was alive will be found on Plate 1, Fig. 3.

The characters of the arms have not been very minutely described either by Joubin or Pfeffer. The order of the arms in the present specimen is $4,2,3,1$, on the left side, whereas on the right side 4 is much shorter, and the order is 2, 3, 1, 4. The first (Plate 8, Fig. 3) arm has a keel for about the distal twothirds of its length, which attains its greatest breadth just beyond the mildle of the arm, being there rather broader than the thickness of the arm. Along the ventral margin of the sucker-bearing face is a series of lappets, one opposite to each hook, whose maximum length is about equal to the diameter of the arm in its middle: these become gradually shorter toward both the distal and proximal ends of the arm. They are united by a delicate web, which extends almost to their extremities. Along the edge of the proximal moiety of each lappet, jnst where the web joins it, is a row of minute conical papillae (Fig. 7). The hooks are about fifteen in number, and at the end of the arm is a patch of minute suckers arranged in two rows (Fig. 8). The second arm is in all essential respects similar to the first.
The third arm (Plate 8, Fig. 2) is much stouter than any of the others, and has a very broad keel, expanding into a swimming membrane throughout the whole of its length. The lappets on the ventral margin of the sucker-bearing face are longer, stouter, and blunter than in the first arm and are united by is web in the same way. On the ventral surface of the arm close to the attachment of the keel are several patches of two to five luminous orgaths, a group of three being foumd guite close to the tip.

The fourth arm (Plate 8, Figs. 4, 5) presents considerable differences from the others. It is distinctly lunger and the hooks are smaller, and there are 110 suckers at the extremity. On the dorsal margin of the hook-bearing face is a low irregular elevation, which looks like a vestigial protective membrane: it extends from a point opposite the proximal hook to about two-thirds up the arm. On the ventral margin a narrow membrane extends along the middle third. On the dorso-external aspect of the arm is a membrane which springs from the root of the third arm, passes outside the tentacle, and is attached along the fourth arm almost to its extremity, becoming gradually narrower as it proceeds. The breadth at the base is abont equal to the diameter of the arm. At the extremity are the three black, beal-like knobs, characteristic of the genus, the structure of which has been described ly Junbin ('96).

Two other specimens I take to be males of the same species. The seneral arrangement of the arms is the same. The specimens are not so well preservel, and the delicate web between the lappets along the margins of the arms has been in a great part destroyed. At the base of each arm jnst proximally to the suckers is a larger or smaller number of smatl papillae, which look at first sight almost like the stalks from which suckers have fallen. There is, however, no indication of any solution of continuity in the surface, and in no
single instance did I find any of them bearing a sucker. On the first arm there are only three or four of these, very low down close to the buccal membrane; on the second they are slightly more numerous, on the third there are seven or eight, which form a triangular patch with the apex directed towards the root of the arm; on the fourth right arm there are about a dozen similarly disposed.

The fourth left arnı (Plate 8, Fig. 5) further shows a remarkable form of bectocotylization. This is produced chiefly by a development of the lappets and web along the ventral margin of the sucker-learing surface. The web becomes rapidly broader from the proximal ent, until at a point about onethird along the arm its brealth is three times the diameter of the arm : hence it becomes gradually narrower, running off into the arm just before the tip. The lappets are correspondingly lengthened and form a series of parallel ribs strengthening the membrane. Along their wargins (Plate 8, Fig. 6) may be seen a series of minute papillae like those described on the other arms. On the dorsal margin of the sucker-bearing face is a row of lappets, also provided with rows of papillae, but I was not alle to find any trace of a web uniting them. However, as the web is in all cases very delicate, it is quite possible that it may exist. At the root of the arm is the triangular group of papillae alluded to above.

The Rudula, which has not been hitherto described, is figured on Plate 8, Fig. 9. It consists of the nsual seven longitudinal series: the centrals are extremely simple, an acute point arising from a plain rounded base; the points diverge from the middle line, sometimes to the right, sometimes to the left, only about one in six being quite symmetrical. The first laterals have a strong pointel tip mounted towarls the median aspect of a simple base, the points being directed somewhat inwards ; the second laterals are stout, curved, and pointed ; the third laterals are much larger, comparatively more slender and blunter thau the second, and are bent to about the quadrant of a circle.

38. Abraliopsis, sp.?

(1ate 2, Fig. 3.)

Mahitat. -Station 2610 I yil., Gulf of Panama; March 11, 1891 ; lat. $7^{\circ} 31^{\prime}$ N., long. $78^{\circ} 42^{\prime} 30^{\prime \prime} \mathrm{W}$., surface to 300 fathoms; temperature, surface 65°; one specimen; immature. [H. 64.]

Shation, 14, north of the Marquesas Islamls; September T, 1890; lat. $6^{\circ} 41^{\prime}$ N., long. $137^{\circ} \mathrm{W} . ; 150$ fathous to surface; temperature, surface, 82°; one specimen. [H. 143.]

My friend Dr. Iffeffer, who examined the former of the above-mentioned yomig specimens, considers it to helong to the Abraluppsis group, partly becanse of the length of the tentacles, and partly because at the extremity of the left ventral arm (the right being imperfeet) is to be seen a slight knob-like swelling', which might be a stage in the development of the curious pigmented
organ, found in this position in the genus Abraliopsis. At this stage of growth there is no trace of hooks : they are represented only by suckers. The colored drawing here reproduced was made on the voyage immediately after the capture of the specimen.

The specimen [H. 143] captured on the later cruise shows rudimentary phosphorescent organs, when examined under a lens just as the alcohol bas evaporated from the surface. One ventral arm has a little brown patch near the tip.

PTERYGIOTEUTHIS.

Pterygioteuthis H. Fischer, '96, p. 205.
Ptergyioteuthis l'feffer, : 00, pp. 165, 166.

39. Pterygioteuthis giardi.

(Plates 7 and 9.)

Pterygioteuthis giardi II. Fischer, '96, p. 205, Plate 9.

Habitat. - Station 3375, off Cape San Franciseo, March 4, 1891 ; lat. $2^{\circ} 34^{\prime}$ N., long. $82^{\circ} 29^{\prime}$ W., 1201 fathoms; gray globigerina ooze ; temperature, surface 77°, bottom $36 .{ }^{\circ} 6$, one specimen, No. 7959 B. [H. 69.]

Station 3406, Galapagos Is., between James and Indefatigable Is., April 3, 1891 ; lat. $0^{\circ} 16^{\prime}$ S., long. $90^{\circ} 21^{\prime} 30^{\prime \prime} \mathrm{W}$., 551 fathoms ; rock ; temperature, surface 81°, bottom $41 .{ }^{\circ} 3$, one specimen, No. 7965. [H. 70.]

Station 3436, sonth of Guaymas, April 22, 1891 ; lat. $27^{\circ} 34^{\prime}$ N., long. 110° $53^{\prime} 40^{\prime \prime}$ W., 905 fathoms; br. m. lik. sp.; temperature, surface 72°, bottom $37 .{ }^{\circ} \cdot 2$, one specimen, No. 7968 . [H. 71.]

Station 3437 , about 50 miles south of Guaymas, April 23, 1891 ; lat. - N., long. - W., 628 fathoms; br. m. bk. sp. ; temperature, surface 70°, bottom 40°, one specimen, No. 7966 . [II. 72.]

As the type specimen figurel by Fischer was a very young one, it seems worth while to grive a full description of a more mature form.

The Body (Plate 7, Fig. 6) is conical ; about three times as long as broad. The fins are each broadly elliptical, attached to the body for only about onehalf their length : the breadth across the two expanded tins is about two-thirds the length of the body. The siphon is short and bluntly conical with double supporting bands; the ralve is small, but distinct; the funneloorgan consists of a ronghly triangular pad, with the siles somewhat excavated; lying on the dorsal wall of the funnel on either sile of it are two oval pads, with the anterior extrenities directed obliquely inwarls.

The Head is large and rounded, distinctly wider than the bolly: the cyes are globular, occupying the whole of each side of the heal: the ocular aperture is contracted and shows no sign of an emargination. There is only a shallow depression for the siphon. Beluw and behind each eve is the olfactory organ in the shape of a minate papilla. Around the inferior circumference of the eve,
beneath the integrument, are four or five eye-like bodies, which are presumably phosphorescent orguns: the largest of these is situated just in front of and below the ocular opening; it forms the antero-lateral prominence in the outline of the head and is readily seen through the semi-transparent skin: it is oval in form, the length being nearly equal to the diameter of the lens; the others are difticult to see until the skin has been removed. Surrounding the mouth is an extensive buccal membrane, of a purplish colur, which is attached to the inner surface of all the arms, except the ventral pair, to a height of about 3 mm . from their bases.

Tie Arm; are sulb-equal and about two-fifths the length of the body. The first arm (Plate 7, Fig. 1) is provided on the inner aspect proximally with about eight pairs of molerately large suckers, then four pairs of gradually diminishing hooks, and beyond these a double series of small suckers, gradually diminishing and reaching to the tip of the arm. The form of the houks is shown in Firs. 8 and 9. On the dorsal margin the middle third of the arm is occupied by a narrow membrune: on the rentral marrin is a web nearly half the breadth of the arm, which is cut by a series of notches into lappets large in the middle third of the arm and gralually diminishing towards the apex. On the external aspect of the arm is a narrow web for about its third quarter.

The second arn (Fig. 2) is of almost the same length as the first: it is armed with about five pairs of suckers and then three pairs of books, beyond which is a single small sucker ; there is no web on the dursal margin, but on the ventral is a broad web which has a wary margin in the proximal half, becoming somewhat more deeply notelied towards the apex : on the external aspect is a narrow web, for about the distal third.

The third arm (Fig. 3) is of the same length as the second : it is provided with three pairs of suckers and then six or seven books about the middle of its leneth, the distal portion being unarmed : on the dorsal margin is a very narrow web for the proximal twothirds and on the ventral a broad web, wavy at first and then scalloped : there is a broal web for more than the distal half on the outer aspect.

The fourth arm (Fin 4) tapers more abruptly, especially in the proximal portion, than the others; the dursal aspect is hollowed, where it lies against the tentacle, and the donso-external ande is proluced into a thin web which juins the rout of the third arm: it passes outside the tentacle and expands distally into a web, comparatively broad in the midnle thirl of the am and becoming evanescent towarls the tip. It possesses meither hooks nor suckers.

The tentucle is about as long as the holy. It is at first slember; then follows n swollen portion, after which it is slemder again, and afterwards becomes rhomlonidal in section, that anyle of the rhomb which is directed outwards being romilel off, whist the other three are promoncel. From this point it tapers gradually to the tip, there being no expandel club. Thee sucker-bearing, face occupies only a few millimetres of the extreme tip of the infero-interual face. There are two moderatesised suckers proximally with smooth rings sueceeded
by two pairs of smaller suckers, and then by a large number of gradually diminishing suckers in four series. Besides the two large proximal suckers are two rounded pads, situated in bollows, so placed that they occupy two angles of a rhombus, the suckers occupying the other two. With the suckers they undoubtedly constitute a fixing apparatus, as suggested by Fischer.

The Surface is smooth throughout.
The Color, in the spirit specimen, is a pinkish yellow, rather darker above; the buccal membrane a dull yellowish purple, paler within than without.

The Radula (Plate 7, Fig. 7) is remarkable for the complexity of the central tooth, which consists of a triangular cusp, springing from a rather irregnlar base; on either side of the base, near its posterior end, there is a prominence, which sometimes forms a separate denticle, united by a distinct articulation with the body of the tooth; this is seen on the left-hand side of the portion drawn. The first laterals are stont and simple, an acute point springing gradnally from a somewhat rectangular base. The second and third luterals are very much alike, sickle-shaped, bent almost to a quadrant, and rather blunter thin the others: the outer scries are comparatively more slender than the inner.

Dimensions.

min.
Length, total (excluding tentacle) 3:3
End of body to mantle-margin 19
Breadth of body 6
Length of fin 9
Breadth of fin 13
Length of first arm 8
Length of second arm 7
Length of third arm 7
Length of fourth arm 9
Length of tentacle 18

On opening the mantle-cavity there are seen just behind the base of the fumel two acorn-shaped bodies, one on either side of the middle line, the rectum passing forwarls between them. Farther back in the middle line is a spheroidal body, very much like an eve in general appearance; still farther back in the mildle line is a fourth, and at the root of each gill is another larger one; these are phosphorescent organs, and an accomet of their structure will be found in the Appentix (p. 51).

Professor Pfeffer has included in the genns Plerygiotenthis Rïppell's species hitherto known as Enoploteuthis murgaritifera. This view I alopted in a commmuication (:02) dealing with the luminous organs of the latter species, but further consideration has lel me to the conclusion that the differences between them are too great to allow of such a course. They agree in form and general appearance, in the size aml ileep color of the buccal membrane, in the tips of the arms being devoid of either hooks or suckers, and very strikingly
in the position and structure of the luminous organs. On the other hand P'terygoteuthis giardi differs from Pt. margaritifera in the following characters:

1. The ventral arm has neither hooks nor suckers.
2. The tentacular club bas two fixing cushions and corresponding suckers and no hooks whatever.
3. The subocular luminous organs are not so numerous, and the anterior abdominal organ is single and not a group of three.

These differences, especially those relating to the armature of the tentacular club, seem to me of generic value, and I see no alternative but the creation of a new genus with Enoploteuthis margaritifera as its type. For it I propose the name Pyroteuthis in allusion to its luminous organs. It is sufficiently diagnosed by the presence of intra-pallial luminous organs combined with a tentacular club armed with both hooks and suckers.

Family HistioteuthidaE.

Histioteuthillae Verrill, '81, p. 431. Histioteuthidue Pfeffer, :00, p. 168.

CALLITEUTHIS.

Calliteuthis Verrill, '80, p. 393.

40. Calliteuthis reversa.

Calliteuthis reversa Verrill, '80, p. 393.
Habitat. - Station 3385; off Cape Mala ; Mareh 8, 1891; lat. 7 $3{ }^{\circ} 32^{\prime} 36^{\prime \prime}$ N., long. $75^{\circ} 16^{\prime} \mathrm{W}$., $2 S 6$ fathoms; temperature, surface 72°, bottom $45 . \circ 9$, green mud; one specimen, No. 796 2. [H. 48.]

This specimen about 35 mm . long appears to be the young of the above species. It is not in very good comlition, and the surface has suffered abrasion here and there. This makes it impossible to give the exact distribution of the luminous organs. There appear to be, however, on the first arm a single row on the outer margin, on the third arm a single row along the ventral margin, and on the fourth arm three rows proximally and two rows distally. Pefler (: 00, pp. 169, 170) makes use of the distribution of these orrans as a generic character, mul it therefore becomes of importance to ascertain whether it varies with age, and if so to what extent.

The division into two parts of the cartilaginous ridge fitting into the base of the siphon, which was mentioned in the "Challenger" specimen, does not appear in this young exmmple.

Family CRANCHIIDAE.

Cranchiadae Gray, '49, pp. 36, 37.
Cranchiae formes Steenstrup, '61, p. 69 (1).

CRANCHIA.

Cranchia Leach, '17, p. 137.

41. Cranchia scabra.

(Plate 10, Fig. 11.)

Cranchia scabra Leach, '17, p. 140.
Octopus (Philonexis) eylais d'Orbigny, '35, p. 20, Plate 1, Figs. 8-14.
Cranchia scabra Owen, '38, p. 105, Plate 21, Figs. 1-5.
Philonexis eylais d'Orb., in: Férussac \& d'Orbigny, '35, p. 102, Poulpes, Plate 17, Figs. 4, 5.
Cranchia scabra Steenstrup, '61, p. 72 (4).
Mabitat. - "Station 74. Surface." [H. 103.]
Station 6; North Pacific Ocean, 960 miles from Guadalupe Island; August 31, 1899; lat. $20^{\circ} 26^{\prime}$ N., long. $133^{\circ} 28^{\prime}$ W.; 150 fathoms to surface ; temperature, surface 75°; one specimen. [H. 144.]

The specimens here recorded cannot, I think, be referred to any other species than C. scabra; the correspondence in the form of the body and fins and the tubercles on the mantle is so close. At the same time there are certain differences in the form of the arms and arrangement of the suckers, which I think it desirable to place on record, and I have therefore given a figure of the oral aspect of the head with the arms of the example from Station it (Plate 10, Fig. 11).

It will be seen that the "Alhatross" specimen differs from Owen's description and figures in the following points : -

1. There is no connecting membrane ("intervening web" of Owen) between the arms.
2. There are no processes connecting the oral lip with the arms.
3. The suckers are in a double series with an intervening space between them.
4. There is a double row of suckers on the stem of the tentacle not mentioned by Owen.

It must, however, be observed that the "Albatross" specimen measures only 11 mm . (just over 5 lines) from the posterior enil of the body to the rout of the tentacle, whilst in Owen's the corresponding dimension was fully twice as much (11 lines). Most of the characters above mentioned are such as may be fairly ascribed to incomplete development. Certainly this is the case with
the first three, and with regard to the fourth there is nothing impossible (or even improbable) in suckers being developed which sulsequently disappear. This appears to be the case even with the arms in Verania. For these reasons I do not think it needful to create a new species for the reception of the present example.

TAONIUS.

$$
\text { Taonius Steenstrup, '61, p. } 83 \text { (15). }
$$

42. Taonius, sp.

(Plate 1, Figs. 4, 5; Plate 6, Figs. 12, 13.)
Habitat. -Station 3414; off Tehuantepec; "surface to 100 fathoms." April 8,1891 ; lat. $10^{\circ} 14^{\prime}$ N., long. $96^{\circ} 28^{\prime} \mathrm{W}$., 2232 fathoms; temperature, surface 82°, bottom $35^{\circ} .8$; green mud; one specimen ; immature. [H. 49.]

This young specimen probably measured about 25 mm . in length (excluding the tentacle) in its uncontracted condition. It is somewhat difficult to form an opinion as to the species to which it should be referred. The shape of the fin and of the terminal portion of the pen is shown in Plate 6, Fig. 13, but it is ton immature to give any definite indications.

The stalk of the tentacle (Plate 6, Fig. 12) has a flattened surface extending halfway from the club towards the oral extremity, with four rows of very minnte long-stalked suckers. In the adult T. hyperboreus (Hoyle, '86, Plate 33, Figs. 6, 7) there are suckers and fixing pads somewhat similarly disposed. A comparison suggests the query - Are the fixing pads the stumps of suckers which have fallen off? In T. suhmi there are two rows of small papillae reaching down the stem of the tentacle for a distance abont equal to the length of the club, but there does not seem to be any definite arrangement of suckers and fixing parls. The whole question of the development of these organs would repay investigation if adequate material were forthcoming.

A drawing showing the appearance of the animal when alive is reproduced on Plate 1, Figs. 4, 5.

43. Decapod, fam., gen., et sp. ?

Habitat. - Station 14; north of the Marquesas Islands ; September 7, 1899; lat. $6^{\circ} 41^{\prime} \mathrm{N}$. , long. $137^{\circ} \mathrm{W} . ; 150$ fathoms to surface; temperature, surface 82°; one young specimen. [H. 140.]

A curious little creature with very short mantle, the dorsal margin forming n prominent point in the middle line; the tentacles comparatively very thick. I do not know to what grony, it is to be referred.

LIST OF STATIONS, WITH THE SPECIES OBTAINED AT EACH.

Cruise of 1891.

Station 3353, off Cape Mala; February 23, 1891 ; lat. $7^{\circ} 6^{\prime} 15^{\prime \prime}$ N., long. $80^{\circ} 34^{\prime} \mathrm{W}$., 695 fathoms ; temperature, surface 73°, bottom 39°; green mud. Polypus, sp., No. 7941.

Station 3356, off Mariato Point ; Febrnary 23, 1891 ; lat. $7^{\circ} 9^{\prime} 30^{\prime \prime}$ N., long. $81^{\circ} 8^{\prime} 30^{\prime \prime} \mathrm{W} ., 546$ fathoms ; temperature, surface 83°, bottom $40 .^{\circ} 1$; soft blue mud.

Polypus pusillus, No. 7952.
Station 335s, off Cape Mala ; February 24, 1891 ; lat. $6^{\circ} 30^{\prime}$ N., long. $81^{\circ} 44^{\prime}$ W., 555 fathoms ; temperature, surface 83°, bottom $40 .^{\circ} 2$; green sand.

Cirroteuthis, sp.
Frockenia clara, No. 7961.
Polypus pusillus, No. 7954.
Bathyteuthis abyssicola, No. 7967.
Station 3363, E. of Cocos Island ; February 26, 1891 ; lat. $5^{\circ} 43^{\prime}$ N., long. $85^{\circ} 50^{\prime} \mathrm{W} ., 978$ fithoms ; temperature, surface 83°, bottom $37 . .^{\circ} 5$; white globigerina ooze.

> Polypus pusillus, No. 7949 .
> Symplectoteuthis oualaniensis. [H. 53.]

Station 3366, E. of Galapagos Islands; February 27, 1891 ; lat. $5^{\circ} 30^{\prime}$ N., long. $86^{\circ} 45^{\prime} \mathrm{W} ., 1067$ fathoms ; temperature, surface 84°, bottom 37°; yellow globigerina ooze.

Eledonella diaphana, No. 7946.
Station 3371, off Cocos Islamd; March 1, 1891; lat. $5^{\circ} 26^{\prime} 20^{\prime \prime}$ N., long. $86^{\circ} 55^{\prime} \mathrm{W} ., 770$ fathoms; temperature, surface 82°, bottom 39°; globigerina ooze.

Argonauta argo, No. 8172.
Polypus januarii, No. 7944.
Station 3374, S. W. of Malpelo Island ; March 3, 1891 ; lat. $\frown^{\circ} 35^{\prime}$ N., long. $83^{\circ} 53^{\prime} \mathrm{W} ., 1823$ fathoms; temperature, surface 80°, bottom $36 .^{\circ} 4$; green ooze.

Stauroteuthis hippocrepium, No. 7942.

Station 33-5, off Cape San Francisco; March 4, 1891; lat. $2^{\circ} 34^{\prime} \mathrm{N}$., long. $82^{\circ} 29^{\prime} \mathrm{W}$., 1201 fathoms; temperature, surface 77°, bottom $36 .{ }^{\circ} 6$; gray grlobigerina ooze.

Abraliopsis hoylei, No. 7959 A.
P'terygioteuthis giardi, No. 7959 B .
Station 3382, off Mariato Point; March 7, 1891 ; lat. $6^{\circ} 21^{\prime}$ N., long. $80^{\circ} 41^{\prime} \mathrm{W}$., 1793 fathoms ; temperature, surface 75°, bottom $35 .^{\circ} 8$; green mud. Abraliopsis hoylei, No. 7964.
Station 3385, off Cape Mala; March 8, 1891 ; lat. $7^{\circ} 3 \underline{2}^{\prime} 36^{\prime \prime}$ N., long. $79^{\circ} 16^{\prime} \mathrm{W}$., 286 fithoms; temperature, surface 72°, bottom $45 .^{\circ} 9$; green mud. Calliteuthis reversa, No. 7962.
Station 3388, off Cape Mala ; March 9, 1891 ; lat. $7^{\circ} 6^{\prime}$ N., long. $79^{\circ} 48^{\prime} \mathrm{W}$., 1168 fathoms; temperature, surface 73°, bottom $36 .^{\circ} 2$; green globigerina ooze. Tremoctopus scalenus, No. 7963. Bathyteuthis abyssicola. [H. 533.]
Station 3393, off Cape Mala; March 10 , 1891 ; lat. $7^{\circ} 15^{\prime}$ N., long. $79^{\circ} 36^{\prime}$ W., 1020 fathoms; temperature, surface 74°, bottom $36 . .^{\circ} 8$; green mud. Moschites verrucosa, No. 7940.
Station 3394, off Cape Mala ; March 10,1891 ; lat. $7^{\circ} 21^{\prime}$ N., long. $79^{\circ} 35^{\prime} \mathrm{W}$., 511 fathoms ; temperature, surface 73°, bottom $41 .^{\circ} 8$; dark green mud.

Mastigoteuthis dentata, No. 7957.
Station 2619, Hyd., Gulf of Panama, "surface to 300 fathoms;" March 11, 1891 ; lat. $7^{\circ} 31^{\prime}$ N., long. $78^{\circ} 42^{\prime} 30^{\prime \prime} \mathrm{W} ., 1100$ fathoms; temperature, surface 68°, battom $36 .{ }^{\circ} 5$; green globigerina noze.

Abraliopsis, sp. [H. 64.]
Station 339S, off Cape Sin Francisen; March 23, 1891 ; lat. $1^{\circ} 7^{\prime}$ N., long. $80^{\circ} 21^{\prime} \mathrm{W} ., 1573$ fathoms; temperature, surface 84°, bottom 36°; green ooze.

$$
\text { Moschites rotunda, No. } 7951 .
$$

Station 2627, IIyil., off Cape San Francisen ; March 25, 1891 ; lat. $n^{\circ} 36^{\prime}$ Ň., long. $82^{\circ} 45^{\prime}$ W., 1832 fathoms ; temperature, surface 81°, buttom 36°; gray globigerina ooze.

$$
\text { Argonauta argo, No. } 8139 .
$$

Station 3100 , E. of Galapagns Islands; March 27, 1891 ; lat. $0^{\circ} 36$ S., long. $8 f^{\circ} 46^{\prime}$ W., 1322 fathoms; temperature, surface 81°, buttom 36°; light gray globigerina ooze.

Mustigoteuth is dentutu, No. 795 G .
Cbarles Island, Galaparos Tslands ; March 31, April 1, 1891.
P'olypues ocnlifer, No. 7918.
Polypus occidentalis, No. 7943.

Station 3406, between James and Indefatigable Islands, Galapagos Islands; April 3, 1891 ; lat. $0^{\circ} 16^{\prime}$ S., long. $90^{\circ} 21^{\prime} 30^{\prime \prime} \mathrm{W}$., 551 fathoms; temperature, surface 81°, bottom $41 .{ }^{\circ} 3$; rock.

Pterygioteuthis giardi, No. 7965.
Station 3110 , off Bindlue Island, 4 miles W. ; April 3, 1891 ; lat. $0^{\circ} 19^{\prime}$ N., long. $90^{\circ} 34^{\prime}$ W., 331 fathoms ; temperature, surlace 82°, bottom $44 . .^{\circ}$; black sand.

Bolitaena microcotyla, No. 7955.
Station 3414, off Tehuantepec ; April 8, 1891 ; lat. $10^{\circ} 14^{\prime}$ N., long. $96^{\circ} 28^{\prime}$ W., 2232 fathoms; temperature, surface 82°, bottom $35 .^{\circ} 8$; green mud.

Cirroteuthis, sp., No. 7945 A.
Abraliopsis hoylei. [H. (67.]
Taonius, sp. [II. 49.]
Japetella prismatica, No. 7945 B.
Station 3415, S. E. of Acapulco ; April 10, 1891 ; lat. $14^{\circ} 46^{\prime}$ N., lons. $98^{\circ} 40^{\prime} \mathrm{W}$., 1819 fathoms ; temperature, surface 83°, bottom 36°; brown mud, glubigerina ooze.

Eledonella diaphana, No. 7960 A.
Abraliopsis hoylei, No. 7960 B.
Station 3417, off Acapulco ; April 11, 1891 ; lat. $16^{\circ} 32^{\prime}$ N., long. $99^{\circ} 48^{\prime} \mathrm{W}$., 493 fathoms; temperature, surface 82°, bottom $40 .{ }^{\circ} 6$; green mud.

Polypus pusillus, No. 7950.
Station 3418, off Acapulco; April 11, 1891 ; lat. $16^{\circ} 33^{\prime}$ N., long. $99^{\circ} 52^{\prime} 30^{\prime \prime}$ W., 660 fathoms; temperature, surface 82°, bottom 39°; brown sand, black sp.

Polypus pusillus, No. 7953.
Station 3420, off Acapulco ; April 12, 1891 ; lat. $16^{\circ} 46^{\prime} \mathrm{N}$., long. $100^{\circ} 8^{\prime}-0^{\prime \prime}$ W., 664 fathoms ; temperature, surface 82°, bottom $39^{\circ} .6$; dark green mud.

Eledonella diaphana, No. $79 \mathbf{4 7}$.
Station 3422, off Acapulco; April 12, 1891 ; lat. $16^{\circ} 4 \bar{\iota}^{\prime} 30^{\prime \prime}$ N., long. $99^{\circ} 59^{\prime} 30^{\prime \prime}$ W., 141 fathoms; temperature, surface 83°, buttom $53 .{ }^{\circ} 5$; green muld.

Loligo diomedeae, No. 7958.
Station 3425, off Las Tres Marias; April 18, 1891 ; lat. $21^{\circ} 19^{\prime} \mathrm{N} .$, long. $106^{\circ} 24^{\prime}$ W., 680 fathoms; temperature, surface 76°, bottom 39°; green mud anl sand.

$$
\text { Argonauta hians, No. } 8138 .
$$

Station 3436, S. of Guaymas; April 22, 1891 ; lat. $7^{\circ} 34^{\prime}$ N.. long. $110^{\circ} 53^{\prime} 40^{\prime \prime} \mathrm{W}$., 905 fathoms ; temperature, surface 72°, bottom $3 \overline{7}^{\circ}{ }^{\circ} 2$; brown mul, black sp.

Ptcrygioteuthis giurdi, Ňu. 7968.

Station 3437, about 50 miles S. of Guaymas; April 23, 1891 ; 628 fathoms ; temperature, surface 70°, bottom 40°; brown mud, black sp.

Pterygioteuth is giardi, No. 7966.
" 50 miles south of Guaymas."
Argonauta, sp. [H. 56.]
"Pacific Ocean between Columbia and Mexico."
Polypus tonganus, No. 8040.
"Station 74, surface."
Cranchia scabra. [H. 103.]

Croise of 1899-1900.
Station 1. North Pacific Ocean, 320 miles from Point Conception; August 26,1899 ; lat. $31^{\circ} 10^{\circ} \mathrm{N}$., long. $125^{\circ} \mathrm{W}$.; temperature, surface 63°; taken at the surface.

Teleoteuthis caribaea, 3 juv. [H. 148-150.]
Station 6, August 31, 1899 ; lat. $20^{\circ} 26^{\prime}$ Ň., long. $133^{\circ} 28^{\prime}$ W.; temperature, surface $75^{\circ} ; 150$ fathoms to surface.

Cranchia scabra, 1. [H. 144.]
Tropical Pacific; September 1, 1899 ; lat. $18^{\circ} 19^{\prime} \mathrm{N} .$, long. $134^{\circ} 57^{\prime} \mathrm{W}$.; temperature, surface 76°; taken at the surface, $8 \mathrm{p} . \mathrm{m}$.

Tremoctopus quoyanus, 2 ¢ . [H. 151, 152.]
Equatorial Pacific Ocean, north of the Marquesas Islands; September 6, 1899; lat. about $8^{\circ} \mathrm{N}$.; long. about $137^{\circ} \mathrm{W}$.; surface at night.

Omychoteuthis banksi, 1. [II. 110.]
Station 14, Pacific Ocean, north of the Marquesas Islands ; September 7, 1899 ; lat. $6^{\circ} 41^{\prime}$ N., long. $137^{\circ} \mathrm{W}$.; temperature, surface 82°; taken at the surface.

Teleoteuthis caribaea, 2 juv. [II. 131, 132.]
Oinmastrephes, sp., 1 juv. [H. 133.]
Ihyndhoteuthis chumi, 1 juv. [II. 131.]
Embryo, indeterminate. [H. 14i.]
Shation $14 ; 150$ fathoms to surfice.
Ommastrephes, \&p., 2 јuv. [H. 141, 142.]
Abruliopsis, sp., 1 juv. [11. 143.]
Embryo, indetermimate, 2. [H. 139, 140.]

September 7, 1899 ; surface, 8 p. m. Embryo, sp. indet. [H. 135.]

Station 17, equatorial Pacific Ocean, north of the Marquesas Islands: September 10, 1899; lat. $0^{\circ} 50^{\prime} \mathrm{N} .$, loug. $133^{\circ} 54^{\prime} \mathrm{W}$.; depth, 2463 fathoms; temperature, surfice 79°; light yellowish-gray globigerina ooze ; trawl.

Cirrobrachium filiferum. [H. 130.]
Station 18, 175 miles north of the Marquesas Islands ; September 13, 1899; lat. $6^{\circ} 25^{\prime} \mathrm{S}$., long. $138^{\circ} 59^{\prime} \mathrm{W}$.; temperature, surface $8 v^{\circ}$; 400 fathoms to surface.

Onychoteuthid, gen. et sp. indet. [H. 136.]
Off Rangiroa Island ; September 2t, 1899; lat. about 150° N., long. 148° W.; 8 p. m., surface tow net.

Euprymna stenodactyla, 1 juv. [H. 126.]
Station 27, 6 miles S. 20° E. of Amna Maria Bay; September 15, 1890 ; lat. $9^{\circ} 1^{\prime} \mathrm{S} ., 140^{\circ} \pm^{\prime} \mathrm{W}$.; temperature, surface $79^{\circ} ; 320$ fathoms to surface.

Onychoteuthicl, indet., I juv. [H. 138.]
Makatea Island, Panmotu Archipelago ; October 6, 1899 ; shore.
Polypus, sp. juv. [H. 125.]

Makemo Island, Paumotu Archipelago, October 20, 1899. Lagonn of Makemo, October 19, 1899. ${ }^{1}$
Polypus, sp. [H. 124.]

Papiete, Tahiti ; on the reefs, November 14, 1899.
Polypus, sp. [H. 146.]

Funafuti Island; December 24, 1899; shore ; taken by the seine.
Euprymna stenoductyla, 1 ¢. [H. 128.]
Gilbert Islands, about 1 mile off Tarawa Island; January 2, 1900; surface, electric light.

Euprymna stenodactyla, 1 juv. [1I. 13i.]
Jaluit ; January 13, 1900 ; shore.
Sepiotenthis lunulata, of ㅇ. [H. 104-109.]
Station 220, southwest of Kwajalong Island, Marshall Islands; January 16, 1900 ; lat. $8^{\circ} 38^{\prime} \mathrm{N}$. ; long. $167^{\circ} 37^{\prime}$ E.; temperature, surface 82°; 150 fathoms to surface.

Eledonclla diaphana, juv. [H. 129.]
${ }^{1}$ There were two labels with different dates in this bottle.
YOL. XLIII. - No. 1

Arbno Atoll, Marshall Islands; Jannary 24-26, 1900 ; lat. about $7^{\circ} \mathrm{N}$. ; long. about $171^{\circ} 30^{\prime} \mathrm{E}$. ; surface of the lagoon, electric light.

Polypus macropus, juv. [H. 111.]
Polypus, sp. juv. [H. 112, 113.]
Euprymna stenodactyla, 2 o [H. 114, 116], 1 \& [H. 115]; 4 juv. [H. 117-120.]

Arhno Atoll, January 27, 1900 ; surface of the lagoon, electric light. Polypus, sp. juv. [H. 121.] Euprymna stenodactyla, 1 ㅇ [H. 122], l juv. [H. 123.]

Station 236; southwest of Arhno Atoll, Marshall Islands; January 28, 1.900 ; lat. $6^{\circ} 34^{\prime} \mathrm{N} ., 170^{\circ} 59^{\prime} \mathrm{E}$. ; temperature, surface 81°; surface, electric light.

Argonauta, sp. 1 \& [H. 127], 1 § [H. 145].

A PPENDIX.

the luminous organs of certain cephalopoda.

(A) Pterygioteuthis giardi.

(Plate 9.)

The luminous organs in this species closely resemble, as might be expected, those of the nearly allied slecies, Pyroteuthis margaritifera. Of these a short notice has recently appeared (Hoyle, :02), and what follows will, of necessity, be to some extent a recapitulation of that paper. The specimens which came into my hands had not been preserved with any special view to histological examination, and some of them had suffered a good deal of injury, so that the account here given can only be regarled as of a preliminary character.

The most striking peculiarity in regard to the luminous organs in the genus Pterygioteuthis is that they are situated on the eyeball or within the mantlecavity, in either case below the integment, so that they are only fanctional by reason of its transparence during life. After immersion in alcohol the tissues become opaque, and though sometimes one or two of the larger ocular orgins may be dimly scen throngh the skin, it is only after dissection that they are clearly visible, or, in the case of the intrapallial organs, visible at all.

As in the Mediterranean species, the luminous organs may be divided, according to their situation, into four sets:-

1. Ocular.
II. Siphonal (Plate 9, Fig. 1, S., S.)
III. Branchial (Fig. 1, B., B.)
IV. Abdominal (Fig. 1, A^{1}, A^{2}).
I. The Ocolar Orgavs are disposed in the equatorial region of the ventral aspect of the eyeball, and resemble a series of warts projecting from it. Owing to the damagel contition of the eyes in most of the "Albatross" specimens, I have been unable to determine their number and position with certainty, but there appear to be five, situated at approximately regular intervals on the lower half of the equator of the eyeball. Each organ is roughly spheroilal, with the outer surface somewhat flattened and the deeper more convex. The diameter and the depth are subequal, being about 0.45 mm . in the larger and a little more than half as much in the smaller.

As regards microscopic structure, the state of preservation leares so much to be desirel that it scems hardly worth while to go into very minute details. The following is an account of the facts I have been able to elucidate by a study of serial sections.

Each organ consists of the following parts: -

1. The Capsule.
2. The Posterior Cup.
3. The Iuner Cup.
4. The Central Mass.
5. The Anterior Cap.
6. The Capsule (Plate 9, Fig. 2, c) is abont $0.0 \frac{1}{4} \mathrm{~mm}$. thick, and consists of rather loose comective tissue with small irregularly-shapell nuclei scatterel in it here and there. The inner half of the thickness of this layer is deeply pigmentel, the tissue being permeated by a mass of granular redlish-brown partieles. The color and density of this layer agree with that to be noticed subsecpuently in other organs of this species, and it is in marked contrast with the rery opaque black pigment seen in Abraliopsis. It is specially noteworthy that no similar layer was observed in the ease of Pyroteuthis margaritifera.
7. The Posterior ('up (Fis. 2, p. c.) is built up of a large mumber of flattened oval or almost circular scales arranged in concentric layers, and leaving a hollow in the middle which contains the knol, of the central mass. In section these seales, bemor thicker in the midille than at the enges, have an irregnlarly fusifurm outline, and their concentric arrangement is very conspicuous. They stain very leeply with all the reasents ret tried (haematoxylin, carmine, and osmic acil). In some parts of the sections, motably in the more superficial layers, they appear to be lomogenenus, but in other parts they present a frayed-out appearance, and are then seen to be made up of a mmber of interlacing filmils with a less dense substance between them (Fig. 3). They vary much in limensions; the larsest, situated in the onter layers, measure 0.08 mm . in dianeter by 0.03 in thickness, whilst those near the centre measure rather less than half thee dimensions. The smallest of all are near the rim of the enp; they are sulb-cireular rather than fusiform in ontline, and the diameter in many e sees is only alnout (0.01.) mun.

The scales are not in contact with each other, hut are separated by interspaces of alout 0.01 mm . in thickness, hint varying much in diflerent places. A delicate commective tisstre, which stains only very feehly with the reagents above mentioncal, filla up these interpplees. Hareand there a malibly directed passage is seen perforating several of the layers of seales, and in its contre may heswen a fibril which can often be tracel to the central mass, and i. presime
 to their somree in the oater havers of the organ.

- The actual form of the priphery of these scales is very difficult to determine, becanse the sections cut them at such varying anders. Tungential sections
naturally give the best idea of it, but even here it is impossible to be certain that in any particular case the whole outline is shown. Two scales from the same series of sections are shown in Fig. $4, A$ and B.

Comparison of a number of such sections leads, however, to the belief that they are, speaking generally, oblong in form with rounded angles. Here and there a deep notch is seen in the margin of a scale, which gives passage to the nerve as mentioned above (Fig. $4, B, n$).

The fibrillar structure is not shown in these tangential sections, but there are indications of the presence of lacunae which may, perhaps, be the interspaces between them. There are great variations in the constitution of the scales in the different sections, which I can only attribute to the state of preservation.

As compared with P. margaritifera, the scales are less regular in arrangement and not so homogeneous in structure.
3. The Inner Cup (Fig. 2, i.c.) might perhaps be more correctly termed a funnel, for where the bottom wonld be is a space through which passes the central mass to be described below, and not only is the diameter of the cup much larger at the top, but the thickness, too, increases very greatly towards what may be termed the rim, whilst at the bottom it tapers away to a thin edge. The internal diameter of the cup at the month is 0.2 mm . and at the bottom 0.09 mm ., the depth 0.12 mm ., and the thickness of the rim about 0.08 mm . It is composed of a mass of rather coarse fibres, which pass from the deeper portion to the more superficial, in layers parallel with the inner surface of the cup. Here and there an opening is left through the wall of the cup, apparently for the passage of a nerve. The fibres are much coarser and more closely packed, and stain much more deeply than those of I. margaritifera, in which species, too, there are no nerve channels to be seen, - a fact which is probably to be explained ly the difference in size and arrangement of the central mass in the two species.
4. The Central Mass may be considerel as rivisible into two portions: (A) a spheroidal knoh, and (B) a cone occupying the axis of the organ, and bearing on its apex the knol just mentioned.
(A) The spheroildal knob (s. k.) necupies the centre of the posterior cup, ant constitutes, in fact, a nucleus around which the concentric layers of seales are arranged. It is abont 0.1 mm . in cliameter.
(13) The axiul cone (a.co.) is sitnated in the centre of the immer cup. It projects through the bottom of the cup to juin the spheroidal knob just described, aml its length being greater than the depth of the cup, it projects some distance above it. Its sloping sides bulge outward somewhat, and its upper surface is eomvex. Its measurements are, basal diameter, 0.23 mm , apical, 0.00 mm ., total length, inchuding the spheroidal knol, ($0.2:$ mm.

The bulk of this central mass is composed of large rombled parenchymatous cells, closely packed together. They may attain a dianeter of as muth as 0.02 mm. , thongh many are much less. They consist of alnonst structureles protoplasm, which stains but slightly, and the cell-boundaries are indistinct.

The nuclei are large and spheroidal, measuring, in some cases, as much as 0.008 mm . in diameter. The nuelei in the more superficial parts of the organ are much larger than those situated more deeply.

In the centre of the thicker part of the cone are a number of scale-like bodies, placed at right angles to its axis (c.s.). There are from ten to twelve of these seales, measuring on an average 0.08 mm . in cliameter, and 0.012 mm . in thickness. In structure they resemble, on the whole, those forming the posterior cup. 'They stalin in the same way and to the same depth, but they are, on the whole, somewhat thinner in proportion to their diameter, and the fibres composing them are more obvious.

The form of this central mass constitutes the most important difference between the present species and P. marguritifera, for in the latter it is much shorter, the conical part only extenting halfway along the silles of the inner cup, and being hollowed to receive the deeper portion of a structure I have called in that species the "interual cone."
5. The Anterior Cup (a.c.) covers the whole surface of the organ above the central mass. It has the form of a menisus, the deeper surface, which rests upon the central mass, the imner cup, and the edge of the posterior cup, being deeply concave, whilst the upper surface is very convex. The greater part of it is composed of delicate wavy fibres interlacing with each other, and disposed in general parallel with the surface of the organ. Over the central mass the fibres are closer and more nearly parallel than over the lateral portions of the organ, where the texture is much more open, leaving rounded interspaces between them. A few nuclei were seen in these lateral parts, but none in the centre.

In the superficial layers of this anterior eap are a mumber of seales disposed paratlel to the surface. They very closely resemble the scales of the outer layers of the posterior cup, but are somewhat larger in diameter and not quite so thick. They stain very deeply, and the more superficial ones are almost homogenens in composition. There are a few of these scales in the depper layers, but these are much smaller and show a tendency to break up into fibres something like the seales in the midille of the central mass.
II. The Simosal Organs (Fig. l, S. S.) are pared amb lie just within the himler margin of the funnel, and are seen peeping ont from beneath it when the mantle-cavity is opened. Each organ is bluntly priform in shape, or more accurately, perlalas, has the form of an acorn in its cup (Fing. 5). The smaller eml is directed hackwark, and at the imner side of the broad eml is a kiml of stalk by which it is attachem to the remtal wall of the body. The free distal eml is slightly pincmented, while the browd end is paler and the tip is a paler patch of a semi-transparent yellowish hom color. The length of the or'mis ahout 0.9 mm . and the greatest diameter 0.8 mm .

In minute atructure the siphonal organs clusily resemble the ocular organs in their main features (Fig. 6). It will he sullicient therefore to emmerate their constituent parts and to mention the points in which they present iliflerences. On the whole, they are mone like the organs of I. margaritifera.

1. The Posterior Cup presents an outer coating of brown pigment (c.) which, however, is neither so thick nor so dense as that of the ocular organ. The sciles composing the $\operatorname{cup}(p, c$.) are thicker and more closely packed, and the connective tissue lying between them is more delicate. Most of the sections of this organ which I examined had been stained with carmine, and this fact may account for an apparent difference in the composition of the scales. They present a granular appearance, but do not show traces of a network like that described above. The form of the scales, judging by an examination of tangential sections, seems to be much less regular than in those above mentionerl. They give off processes which branch, and in some cases almost appear as though they joineri one scale with another, though I hardly think that such is the case. A somewhat oblique section, through the cup and the central knul, is shown in Fig. 8, and exhibits very clearly the concentric arrangenent of the scales round the central knob.
2. The Inner Cone (i. c.) presents very little difference from that of the ocular organs except that the fibres composing it are more delicate. In some of the sections, they show a tendency to curve round the outside edge of the central mass, but this appearance I imagine is che to the sections not being cut exactly through the centre. In some places I detected a nerve passing through the inner cone in the same way as in the ocular organ.
3. The Central Mass (c.m.) is in general form intermeliate between that of the ouldar organs just described and that of P. margaritifera. It resembles the latter in the fact that it has no scales in its centre, and that it does not show distinct cell outlines, whilst in the fact that it extencls as far as the rim of the imer cone it presents a likeness to P. giardi. It is made up of finely granular substance which stains only very faintly. The nuclei are very few and far between in the central knol, but are much more abundant towards the base of the conical portion, where many of them seem to be elongated in the direction parallel to the base of the cone.
4. The Anterior Cap (a.c., a.c.') is made up of two layers of about equal thicknese, hut whereas in the ocular organs the deeper layer is composed of delicate fibrils and the more superficial of large scales, in this instance the scales are in the deeper part, whilst the fibrous portion is above. The sales differ from those of the posterior cup inasmuch as they show a marked tendency to become resolved into fibres (Fig. 7). One or two of the larger ones, however, show no fibres, but simply a granular structure similar to those of the posterior cup, but more pronomnced. The superficial layer is almost homogeneons, but there can be seen in it delicate striations which run for the most part parallel with the surface. They are more clearly marked and less wavy in the deeper layers. The nuclei are fairly abundant and are fusiform in shape, with their long axes parallel to the direction of the fibres.
5. The Collar (co.) is the structure whose presence most clearly distinguishes the siphonal from the ocular organs. It surromuls the organ parallel with its equator just opposite to the deeper layer of the anterior cap. It is covered by the connective tissue capsule of the organ and in minnte structure
consists of a number of delicate fibres arranged in hundles, passing ontwarls and forwards, parallel to each other. Its breadth is about 0.24 mm. and its thickness 0.12 mm .
III. Tue Bránchlal Organs are paired and situated one near the root of each gill (Plate 9, Fis. 1, B, B) a little further back, and also a little leeper in the mantle-cavity than the actual attachment of the gill itself. They are of a flattened oroid form with the longer axis directel rather forwards and inwards. The anterior and more superficial portion has a pale yellowish and rather lustrons appearance, behind which is a crescentic band, which looks as though it were due to subcutaneous pigment. The greatest length is about $0 . i \overline{1 u m}$. and the brealth somewhat less.

The structure of these branchial organs (Fig. 9) is much simpler than that of either of the sets just described. The following parts may be distinguished proceeding from the surface downwards:-

1. Orer the surface is a thin layer (s. l. c.) of connective tissue varying from 0.005 to 0.015 mm . in thickness.
2. Beneath this is a delicate membrane (s. m.) which stains deeply and in which rounded miclei can be made out here and there. It has an almost miform thickness of about 0.006 mm .
3. The central mass ($c . m$.) constitutes by far the greatest part of the whole orgin. It consists of a parenchymatous tissue of cells (Fig. 11), the largest of which are about 0.04 mm . in length, the smallest being less than half as much. The cell bomularies are very distinctly marked, and the protoplasm stains but slightly with haematoxylin. The nuclei are spheroidal and stain very deeply, so deeply that in most cases the nucleolus cannot be seen. The muclei are more numerons and the cell boundaries less distinct in the layer which immentiately underlies the delicate membrane just describel.

Ikere ant there may be seen amongst the cells a sort of lacma in which is a gramular mass with one or two nuclei. Sometimes this mass fills the lacuna, in others it seems to have shrunk away, in which case threads of protoplasm may he seen stretching out from it across the intervening space.

Towariss the posterior edge the structure of the central mass undergoes a change (Fig. 10) ; instead of a parenchyma of rather elongated cells it assumes the appearance in its more superfieial part of a fibro-cellular mass with nuclei scattered irregularly in it (s.r.). In its ileeper portion is an oroil mass of material similar to that composing the greater part of the central masa, hut not so clearly marked off intor cells (l l.). There is a kind of spiral striation ohanorely inlicated, as though the structure had in some way been formen romm a centre.
4. A rather thick layer of very close compact tissue lies below the central masa (r. t. c.). It atains very deeply, and hence its minute structure is very diflicult to decipher, but it apparently consists of a granular sulstance in which now infinite elementa can be made out. In the anterior half this layer forms the hemmiary of the organ.
5. A thin layer of piomented cells covers the posterior half of the orgam on
its deeper surface. It consists of a single layer of cells each with a definite rounded nuclens, ep. The pigment is of the redilish-brown character, which has already been described in speaking of the siphonal and ocnlar orgins and appears to be contained in the inner portion of the cells ($p . l$.)
IV. The Abdominal Organs (Plate 9, Fig. 1, A^{1}, A^{2},) are two in number. The anterior $\left(A^{1}\right)$ occulies the position of the three organs in P. marguritifera (Hoyle, : 02, Fig. 1, A 1, $, 2,3$), thongh it is proportionately mot quite so far in front of the branchial organs as it is in that species. The posterior one (Fig. 1, A^{2}) correspomds in position with that marken $A 4$ in the figure of P. margaritifera just citel.

The anterior organ is slightly elliptical in a superficial view with the longer axis transversely; its axes measure 0.6 and 0.4 mm . respectively. The organ is nearly hemispherical (or more accurately hemi-ellipsoilal) embedderl in the tissues, with its that surface outwards and on the same level as the abdominal wall. On the anterior aspect a kind of thread or stalk runs from it, embedded in the tissues. One organ which I removed was cut into sections longitudinally, that is, by planes parallel to the sagittal plane of the borly (Fig. 12) ; an exanination of these showed it to be composed of the following structures:-

1. The Capsule.
2. The Pigment Layer.
3. The Cup.
4. The Inner Cone.
5. The Central Mass.
6. The Cover.
7. The Superlicial Connective Tissue.
8. The Capsule of comnective tissue (c.) covers the whole of the hemispherical surface of the organ ; it is very thin (about 0.08 mm . thick) and almost structureless, though delicate fibres can be traced here and there, and a few muclei are scattered in it.
9. The Pigment Layer (p.) immediately within the connective tissue just mentioned is thickest just upposite to the stalk and made up of redli-h-brown grammes like the similar layers in the other organs.
10. The Cup (ρ. c.) is marle up of scales, so far as can be mate out closely resembling those already deseribed in other organs. The mily sections I have of this organ are so deeply stained with braziline that it is impossible to make out iny structure in them. This coat is on average 0.1 mm . thick.
11. The Inner Cone (i.c.) can be made out distinctly only on that side of the organ turned towambs the stalk. It consists as in other cases of thin wary fibres very deeply stained. It is much thimer and less conspicnous in this instance than in the others.
12. The Centrul Muss ($\mathrm{r} . \mathrm{m}$.) is much less regular in shape than in those cases alrealy deseribed, but shows traces of a constriction indicating a division into a deeper portion and a more superficial corresponding respectively to the spheroidal and conical portions of other cases. The minute structure is very bully
preserved ; there are only very scanty traces of cell outlines and these priucipally in the superficial division. The nuclei are distinct and rounded or oval and much more numerons in the superficial part.
13. The Cover (co.) consists of a layer of scales which differ from any of those bitherto mentioned in form as well as in arrangement. They are greatly elongated and fusiform in outline, with one end blunter than the other. By this blunter extremity they are attached to the surface of the central mass and pass upwards from it in a more or less curred direction. Those which are furthest away from the stalk pass at an angle 45° to the surface. The next ones become successively more and more vertical and then begin to slope over to the other sile. Those which cover the greater part of the central mass are inclined at an angle of about 30° to its surface, whilst at the stalk end they run almost directly into it. The thinner ends are drawn out into long delicate filrils which curve round and become continuous with a limiting membrane forming the boundary of this layer.
14. The Superficial Connective Tissue (s. c.) is a layer about 0.016 mm . in thickness. It may be divided into three parts, the deeper and the more superficial being structureless, whilst the middle one is granular and has nuclei scattered at intervals along it. I have not been able to make ont satisfactorily ally nerrous supply to the central mass in this instance, but it is quite possible that this nay exist between the scales and the posterior cup as in other cases, for many of the sections were much breken. The Posterior Organ I have not examinel in section.

Regarding the functions and homolngies of the different parts of these organs, there is but little that can be saicl. The central mass I take to be the source of light, and it agrees in pnsition though not in strncture with the cells to which Joubin ('93, '94, '95) has ascribed a similar function in Histioteuthis and Histiopsis.

What I have termed the posterinr cup appears to be closely similar to the corresponding part of the organ described by Joubin, and I think there can be little donbt that he is correct in regarding it as a reflector, though it is not exactly clear to me that one would naturally expect a boly so constituted to discharge such a function. If this be admitted there would then be no reason for cloubting that the superficial portions are a refracting apparatus.

(B.) Abraliopsis hoylei.

(Plate 10, Figs. 1-10.)
The luminous organs of this species are exceedingly numerous and are distributed pretty frecly over the rentral surface and to some extent over the sides of the mante, head, and thind and fourth pairs of arms. Their arrangement is almost exactly bilaterally symmetrical with insignificant variations here and there. Considered more in detail, the diaposition on the varions organy is as fullows.: -

I. INTEGUMENTARY ORGANS.

A. The Mantle (Plate 10, Fig. 1) : - The hinder part of the inferior surface is covered by a patch of organs (p), whilst in front of this they are placed in more or less regular linear series of which the following may be distinguished:

1. A double row (m^{1}) placed not very far from the median ventral line on either side and leaving a narrow free space between them.
2. A single irregular series $\left(m^{2}\right)$ a little distance to the outer side of each of these.
3. A fairly regular single series which commences on either side at the prominent angle of the mantle-margin and passes backwards, converging towards the merlian line in its course (m^{8}).

All these six lines pass posteriorly into the patch of orgins above mentioned.
4. Still further to each side is a wavy series of suall organs more irregular and more widely spaced, extending nearly to the posterior extremity of the body, whilst dorsally to these again and situated on each side of the mantle, is a row of about half a dozen.
5. Along the margin of the mantle is a single series extending rather more than halfway round (m) .

On the dorsal' surface I detected only two or three minute organs, in a linear series parallel and near to the dorsal median line.
B. The Siphon (s):-On the ventral face of the siphon are two groups, one on each side, leaving a clear space in the middle between them. Each group is ronghly triangular in arrangement and consists of six to ten organs.
C. The Heul: - The inferior surface of the head presents a brilliant array of these little oryans. Most conspicnous perhaps is a longitudinal series oceupying the median ventral line (h^{1}). Anteriorly this series bifureates to pass up the fourth arm, and posteriorly it also bifurcates just in front of the tip of the finnel and the two limbs pass backwards and outwards along the margin of the funnel-groove. Parallel with this median series are two others, one un each side (h^{2}), which start from the line of organs along the elige of the funnel-nroove, and pass forwards to the outer edge of the fourth arm on each side. Parallel with this line is a short row of three or four organs, between the funnel and the eye $\left(h^{3}\right)$, and in the same line with it in front of the eve is a gromp of four to eight $\left(h^{4}\right)$. A semicircle of organs is found romed the ventral margin of each eye aperture.
D. The Arms:-Only the thind and fourth pairs of arms are provided with these organs. On the fourth pair there is a single linear series on either matrgin of the ventral fice. The line on the immer margin is the continuation of the lifurcated median line on the lower surface of the head (hl) mentioned above. It extends about halfway up the arm and then ceases. That in the onter margin is a continnation of the series parallel with the median line $\left(h^{2}\right)$; after passing forward a short distance it becomes discontinuous and is resolved
into little linear groups of four to seven organs, separated by interspaces about equal in length to the groups.

On the third pair (Plate 8, Fig. 2) there are little linear groups of two to six organs on the ventral surface along the line where the web or swimming membrane is attached to the arm.

There are no organs on the fin.

General Appearance.

Under a lens the luminous organs of the mantle, arms, etc., present the appearance of small spots which are sometimes raised into papillae by the contraction of the intervening integument (Plate 10, Fig. 3). They have a shining appearance an l consist of a central white speck surrounded by a black ring. Under a low power of the microscope, the black ring is not quite even, but has a wavy external margin and in some cases is clearly seen to be made up of from five to seven separate pieces; this is still more clearly seen to be the case when sections are examined.

The white central portion presents a somewhat different appearance in different organs. In the largest ones it has a yellowish tinge and is more prominent and looks harder than in others. In the organs of smaller size it is paler and flatter, being of a dull pearly white color. In the smallest of all it is quite flat, and in these, ton, the pigment ring is much less developerf.

The diameter of one of the largest is about 0.2 mm ., the central pearl-like spot being about 0.1 mm . in diameter. They vary considerably in size, the smallest being about half as big as the largest. They lie in spaces between the chromatophores.

Minete Structure.

The preparation of complete series of sections of these organs was found to be quite impossible, owing to the hardness of the posterior part of the interior. The cutting went on quite satisfactorily until about halfway through, when the whole of the remainler of the inside was torn ont by the razor, generally spoiling the aljacent tissues on one side and danaging all the remaining sections of that particular organ. In what follows the account of the posterior part has heen compiled from a few very indifferent fragments.

The organ lies embelded in the fibrous comective tissmes under the epidermis and is below the level of the chromatophores with which it does not seem to come into any relation. There is a slight depression in the sulicutancous muscle underneath each organ. There is a series of large sinuses surrounding the posterior portion of the organ (Firs. 4 to 8, s.). The inner wall of these is formed ly a thin layer of comective tissue surrounding the pigment cup, whilst the onter is formed by the sulb-cutaneons connective tissure.

The shape is in general spheroidal, the axial diameter, perpendicular to the surfice of the integment, being rather longer than the transerse diameter.

In general, too, the deeper half is a little more pointed than the more superfieial, so that the form of the organ approaches that of a peg-top (Fig. 4).

Each organ consists of the following parts : -

1. The Lens.
2. The Pigment Cup.
3. The Imer Cup.
4. The Posterior IIemisphere.
5. The Internal Cone.
6. The Lens (Plate 10, Figs. 4,5,l) consists of a pale structureless material which is not acted upon by staining fluids. It is divided up by faint irregular lines of demarcation and occasional cleavage gaps into more or less rounded masses, in the interstices between which nuclei are found here and there.

Viewel in a section taken along the axis (Fig. 4) the lens is seen to be separated by an equatorial groove into an inner and outer portion. These differ somewhat in their structure. In the deeper portion, the pieces of which the lens is built up are rounder and more irregular, their depth being not infrequently equal to their transverse dimeter. In the more supertieial portion, these pieces are more flattened and taper to their edges on either side, and are fitted into each other something like flattened epithelial cells near the surface of the epidermis. The nuclei are modified in accordance with the tissue in which they are found, being rounded or sub-polygonal in the deeper portion and flattened in the superficial. The groove above mentioned receives the inturned edge of the pigment cup.
2. The Pigment Cup (Figs. 4, 6, 7, 8, p.c.) is in the shape of a goblet without a stem and with the edge somewhat invertel. It is built up of a number of seprate pigment masses which are seen in section to be hollow sates with a thick lining of black pigment, a structure which suggests the view that they are possibly modified chromatophores. Their boundaries are not always visible, and hence it is impossible to determine their exact number, the more so as the sections of the posterior part of the organ are never entire. In a horizontal section taken just below the lens (Fig. 6) there are usually six of these which make up a more or less complete ring, and in such eases the boundaries of the individual sales are pretty easy to determine. This ring appears to correspond to the inturnel ellge of the pigment cup. In the deeper portions the hollow cavities of the pigment masses are not so easily seen, nor are the boundaries so distinct. The aperture of the eup, as above stated, is oceupied by the lens. In its bottom is situated the posterior hemisphere, whilst the remainder is lined by comective tissue with numerons large nuclei (Figs. 4, 7, 8, c. t)
3. The Inner Cup (Figs. 4, 7, i. c.) lies inside the pigment cup just deseribet. It might perhaps be more eorrectly deseribed as a fumel, for a conical perforittion runs right through its midule, diminishing in diameter as it descends. The substance of which it is composed stains only very faintly. In an axial
section (Fig. 4) it is marked by striations which run, roughly speaking, parallel to its onter homdary and seem to indicate that it is built up of irresular rods packed closely side by side. A fuir number of more or less complete axial sections of this structure have been obtaned, but I have only been able to discover one or two fragmentary transverse sections. Thesc show the cut ends of the rods packed together with a kind of radiating arrangement from the central aperture towards the circminference (Fig. 7). Between these rods, nuclei occur very sparingly and elongated in a direction parallel with the rorls themselves.
4. The Posterior Hemisphere (Figs. 4, 8, p. h.) occupies the deepest portion of the interior of the organ just within the pigment cup. It has, roughly speakiug, the form of a hemispherical bowl with the rim turned inwards. Its thickness is about equal to one-third of its diameter and is such that only a very small spheroidal space is left in the middle of it and is occupied by the end of the internal cone. The thickness is made up of a series of concentric layers which in the sections appear to be slightly separated one from the other, especially near their edges, but this may be an effect produced by the process of cutting. This sulbstance takes up the stain only faintly, and appears to be somewhat denser in consistency than the inner cup. No nuclei have been noticed anywhere in its substance.
5. The Internal Cone (Figs. 4, 6, 7, i.co.) is situated with its base against the deeper surface of the lens, whilst its spheroidal apex occupies the internal cavity of the posterior hemisphere just described. It is deeply subulate and is bounded by the intermal surface of the imer cup. Under a high power it is seen to be composed of finely granular protoplasm, which is not much affected by the staining fluid. No definite cell boundaries can be seen, but it contains a considerable number of nuclei. Those near the base of the cone are small and ovoil in shape, whilst the deeper ones are clongated in the direction at right angles to the axis. Sume of them are so long as to occupy a considerable portion of the diameter of the cone. A section parallel with the surface of the integrment (Fig. 6) just beneath the lens shows that these elongated nuclei have their long axes curvel to correspond with a circle drawn rombl the centre of the cone. They are situated in the deeper layers, whilst the romm und ovate nuclei occmy the circmerence.

I have not been able to trace the nerve supnly to these organs.

II. SUB-OCLLAR ORGANS.

Beneath each eyeball, covered in the living combition hy the integument, is a row of five organs, placed at eynal distances from each other alone the equator of the lall (Plate 10, Fig. 2). They are visible in the living animal (Plate 1, Fig. 3) evidently by reason of the transparency of the integument.

They are slightly elevated papillae of a clear yellowish-brown color. The three central ones are the smallest and are about 0.18 mus. in diameter,
whilst the two extreme ones measure 0.35 mm . in diameter. The organs are embedded in the comective tissue capsule which lies over the selerotic coat o the eye.

Minute Structure (Figs. 9, 10).

In the deepest portion of the lirger organs is a lenticular mass of tissue about 0.13 mm . in diameter and 0.07 mm . in thickness (l.). It is made up of irregularly shaped masses which are to all appearance structureless, of a pale yellowish-gray color and not affected by the hatmatoxylin with which the preparation has been stained. Beneath this mass is a thin layer of connective tissue (c.) with sparsely scatterel muclei in it, whilst above and around it is a thicker layer of comective tissue (c.) with very numerous, deeply stainen? nuclei of variable shape, mostly, however, with their longer axes parallel to the surface of the organ.
The greater part of the organ is made up of a series of ilelicate fibrils (f.) . These arise from a thin structureless layer lying upon the comnective tissue coat of the lenticular mass just deseribed. They are of extreme tenuity ant radiate ontwarls in all directions from horizontal to vertical, producing in the section the appearance of a fan. The fibrils are, however, none of them exactly straight, but curvel in such a way that in the deeper half of their course they are concave towards the axis of the organ and snbsequently convex, becoming generally concave again where they merge into the clear zone to be described below. The structureless mass from which they arise does not take up the staining fluid, but the greater part of the fibrils has become very deeply colored. The terminal fifth of each fibril remains unstained and appears to be thinner than the remainder, so that a narrow elear zone appears in the section to bomil the surface of the organ (\because.).

On that side of the organ which may be called the inner, as it is turned towards the remaining organs of the same ere, the connective tissue (i.c.) encroaches to some extent over its surface in the form of a thin layer gradually becoming thinner and ceasing at a distance of about 0.01 mm . from the edge. This overlapping portion of the comective tissue contains a few melei.

On the other side of the organ it heeomes flattened out and extends as a horizontal prolongation for a distance nearly equal to the diameter of the lenticular portion. This part consists of delicate fibrils (h.f.) very like those described above, but interspersed between them are strands of the yellowish-gray material deseribed above as forming the small lenticular body in the deepest portion of the organ. Ovoid nuclei are scattered here and there among them. The arrangement of the fibrils here is very much less regular than in the central fan-like portion.
The smaller organs (Fig. 10) present a certain resemblance in structure to the large ones above described. In the deepest portion is a lenticular mass (l.) of mastaned tissine very closely resembling that alowe described. It is. however, broader and ilatter not only in relation to the size of the or an, hut also absolutely, measuring 0.2 mm . in diameter and about 0.05 mm . in thiek-
ness. It rests upon a mass of connective tissue (c.) much thicker than that forming the base of the larger organs, being in fact thicker than the lenticular mass itself. Above it is a similar layer of comnective tissue (c^{1}.) with thickly distributed nuclei very similar to that described above. The radiating fibrils (f.) in this cise seen to spring directly from the comective tissue itself withunt any intervening structureless mass. They are thicker, shorter, and more closely packed than in the larger organs, and as they do not thin out towards their extremities there is no clear zone produced on the onter surface.

These smaller organs, too, appear to be much more brittle than the larger ones, for only in very few cases have I found their sections at all complete.

The only organs which at all approach the pallial orgaas just described are to be found in the somewhat closely allied species Abralia oweni, which has been the sulject of a memoir by Professor Joubin (95). In common with the form unler consideration they are of a spheroidal shape and are surromeded in their deeper half by sacs of pigment which may be modified chromatophores. The network of ressels described and figured by Jonbin (1.11 [222], Fig. 6) appears to be replaced by the lacunae above mentioneil. Here, however, the resemblance ceases ; it is only with lifhenlty that the internal structures can be recrarded as in any way homologons with each other.

Julding by composition alone, it might be said that the crystalline style (tige cristolline) of Joubin is representel ly the funnel-like apparatus of Abraliopsis, bint even here dillerences obtain, for whilst the style vecupies the very centre of the organ, the fumel is hollow and in its midhle is found a cellular plug. Furthermore, the style is clescribel as consisting of concentric layers and quite devoil of mulei, whereas the funnel is mate up of rodlike chem-nts, arranged aromul a centre, it is trne, and nuclei, though in small mumbre, are present.

There is nothing, apmently, in the organs of Abratia corresponting either to the lens-like bonly, to the central cone, or to the harl posterior cup in Ahrelimpse, whilst on the other hand the latter shows nothing like the hood (culutt) or the notwork (rasmen) whased in the former.

In the face of disempmeine such as these in the case of forms which do unt seem to be far apart systematically, the elucidation of the finn tions of the difforent parts on matomieal or histulugical gromms seeme welluigh hopedess.

I :m nut aceprinted with ay orous at all resembling those found on the eges of Abralinnmis hoyl i.

BIBLIOGRAPHY.

The dark figures in parentheses are those by which the papers are referred to in the text; they are the tens and units figures of the dates of publication; the centuries are indicated thus: $-〔 1700-1799,{ }^{1800-1891, ~: ~} 1900-1903$.

Adams, A., \& L. Reeve.
(48.) The Zuölogy of the Voyage of II. II. S. "Samarang" muder the Command of Captain Sir Edward Belcher during the years 1543-46; Mollusca, part 1 ; London, 1818.
Appellöf, A.
(86) Japanska Cephalopoder, K. Seensk. Vetensk-Ikud. Handl., vol. 21, part 13, pp. 1-10, pls. 1-3, 1556.
Blainville, H. D. de.
('24.) Dictionnaire des sciences naturelles, vol. 32, p. 175, 1521.
Brazier, J.
(92.) Catalogue of the Marine Shells of Australia and Tasmania, part 1, Cephalopoda, Australiun Mus. Cutulogue N゙o. 15., 1592.

Brock, J.
(87.) Indische Cephalopoden, Zool. Jahrbücher, rol. 2, pp. 591-614, pl. 16, 1557.

Cantraine, \mathbf{F}.

(40.) Malacologic Méditerranćcune et littorale, Nouv. Mém. Acad. Bruxelles, vol. 13, part 1, $1 \tilde{f}_{3} \mathrm{p} ., 6 \mathrm{pls}$. , 1 S 40.
Chun, C.
(:03.) Rhynehotenthis: Eine merkwürdige Jugendform von Cephalopoden, Zool. Anzeiger, vol. 26, pp. 716-717, 3 cuts, 1903.

Delle Chiaje, Stefani.

(29) Memorie sulla storia e notomia degli animali scnza rertebre del regno di Napoli, vol. 4; Napoli, 1529.
Eschricht, D. F.
(36.) Cirrotenthis Mïlleri, eine nene Gattung der Ceplalopoiken hithemh, Nora Acta Acad. Caes. Leop.-Carol. Nat. Cur., vul. 1s, part 2, 10 I', 3 pls., 1836.
vol. xth1. - so. I

Férussac, A. de, \& A. d'Orbigny.

('35.) Histoire uaturelle géuérale et particulière des Céphalopodes acétabuliferes, vivants et fossiles. Paris, $1 \$ 35-4 \$$.

Fischer, H.
('96.) Note préliminairc sur le Pterygioteuthis Giardi, céphalopode nouveau recueilli daus le cours de l'Expédition scientifique du Talisman (1SS3), J. Conchyl., vol. 43, no. 4, for 1595, pp. 205-211, pl. 9, 1596.

Fischer, P.
('83.) Note préliminaire sur une nouvelle espèce du genre Cirroteuthis (C. umbellata), J. Conchyl. (3), vol. 23, pp. 402-40t, 1553.
Gill, T.
(71.) Arrangement of the families of Mollusks. Prepared for the Smithsonian Iustitution, Smithson. Miscell. Coll. 227, 1571 [Cephalopoda, np. 1-3].

Goodrich, E. S.
('96.) Report on a Collection of Ceplalopoda from the Calcutta Museum, Trans. Linn. Soc. (2), vol. 7, pp. 1-2t, 5 pls., 1596.

Gould, A. A.
('52.) United States Exploring Expedition during the years 1835-42, under the Command of Charles Wilkes, U. S. N., vol. 12, Mollusca \& Shells, Boston, 1532.

Grant, R.E.
('33) Sepiola stenodactyla, Proc. Zoöl. Soc., 1S33, pp. 42-43.
Grant, R. E.
('33 a.) On the Anatomy of the Sepiola vulgaris, Leach, and account of a new species (Sep. stenoductyla, Grant) from the coast of Mauritius, Trans. Zoül. Soc., vol. 1, pp. 77-S6, pl. 11, 1S32.

Gray, J. E.
(47.) A List of the Genera of Recent Mollusca, their Synonyma and Types, Proc. Zoül. Soc., 1S47, pp. 129-219.
Gray, J. E.
(49.) Catalogue of the Mollusea in the Collection of the British Museum, part 1, Cephalopoda antepedia, $S+16 \pm$ p., Loudon, 1519 .
Hoyle, W. E.
(85.) The Cephalopoda, in: Report on the Scientifie Results of the Voyare of 11. M. S. "Challenger" during the years $1973-76$, Narrative, vol. 1, pp. 269-2it, figs. 106-109, loudon, 1585.
Hoyle, W. E.
('85 A.) Diagnoses of now Speries of Ceplaloporla collected during the Cruise of 1I. M. S. "Challenger," part I, The Octopoda, Ann. anel Mag. N゙at. Mist. (5), vul. 15, p. 222-236, Mareh, 158 j ; part 2, 'Tlıe Decapoda, op. cil., vol. 16, pp. 181-203, September, 1955°.

Hoyle, W. E.
(85 в.) l'reliminary Report on the Cephalopoda collected during the Cruise of H. M. S. "Challenger," part 1, The Octopoda, Proc. Roy. Sor. Edin., vol. 13, pp. $91-114$, cuts, August, 1885; part 2, The Decapoda, tom. cit., pp. 281-310, cuts, 1885.

Hoyle, W. E.
(86.) Report on the Cephalopoda collected by H. M. S. "Clallenger" during the years $1873-76,6+246$ p., 33 pls., map, Zoöl. Chall. Exped., vol. 16, part 44, 1856.

Hoyle, W. E.
(: 01.) On the generic names Octopus, Eledone, and Histionsis, Mem. Manchester Lit. \&-Phil. Soc., vol. 45, no. 9, 7 p., 1901.

Hoyle, W. E.
(:02.) The Luminous Organs of Pterygioteuthis margaritifera, a Mediterraneau Cephalopod, op. cit., vol. 46, no. 16, 14 p., 6 cuts, 1902.

Ijima, I., \& S. Ikeda.
('95.) Description of Opisthoteuthis depressa, n. sp., Journ. Coll. Sci. Imp. Univ. Tokyo, vol. 8, part 2, lŏ p., pl. 33, 1895.

Jatta, G.
('96.) I cefalopodi viventi nel Golfo di Napoli, Fauna u. Flora des Golfes von Neapel, pt. 23, 1896.

Joubin, L.
(93.) Recherches sur l'appareil luminenx d'un céphalopode, Histiotcuthis ruppellii, Verany, Bull. soc. sci. méd. de l'Ouest, vol. 2, no. 1, pp. 49-50, cuts, 1593.

Joubin, L.
(93A.) Note complémentaire sur l'appareil lumincux d'un céphalopode: Histioteuthis ruppcllii, Verany, tom. cit., no. 2, pp. 161-169, cuts, 1893.

Joubin, L.
('94.) Nouvelles recherches sur l'appareil lumineux des céphalopodes du geure Ilistiotcuthis, op. cit., vol. 3, no. 3, 15 p., cuts, 1894 .

Joubin, L.
('95.) Note sur les appareils photogènes cutanés de deux céphalopodes. Histiopsis atlantica Hoylle et Alralia oreni Verany Horlc, Mém. soc. zool. France, vol. S, pp. 212-22S, cuts, 1895.

Joubin, L.
(96.) Observations sur divers céphalopodes. Tère note: Abraliopsis pfefferi (Hov. gen. et spec.), Bull. soc. sci. méd. de l'Ouest, vol. 5, no. 1, pp. 19-35, cuts, 1596.

Joubin, L.
(:01.) Céphalopodes prorenant des campagnes de la Princesse Alice (18911897), Résult. camp. sci. Albert de Monaco, fasc. 17, 135 p., 15 pls., . 1900 [1901].
Joubin, L.
(:02.) Revision des Sepiolidae, Mém. Soc. Z̈öl. France, vol. 15, pp. S0-145, 35 figs., 1902.

Keferstein, W.

('66.) Dr. H. G. Bronn's Klassen und Ordnungen des Thierreichs: Weichthiere (Malacozoa), 2 vols. ; Leipzig \& Hcidelberg, 1S62-66 [Ccphalopoda, pp. 1397-1464].
Lamarck, J. B. P. A. de.
(99.) Sur les genres de la Sèche, du Calmar et du Poulpe, Mém. Soc. hist. nat. Paris, vol. 1, an 7, pp. 1-2̄5, pls.], 2, 1799.
Leach, W. E.
('17.) Srnopsis of the Orders, Fanilies, and Genera of the class Cephalopoda, Zoül. Miscell., vol. 3, pp. 13i-141, 1817.
Lesson, R. P.
(29.) Mollusques, in: Vorage autour du Monde exécuté, sur la corvette de S. M. "La Coquillc," peudant les anuées 1822-25, \&c., Zoologie, vol. 2, part 1, Paris, 1829.
Lesueur, C. A.
('21.) Descriptions of several new species of Cuttlefish, Journ. Acad. Nat. Sci., Philadelphia, vol. 2, pp. 86-101, pls. 6-9, 1821.
Lichtenstein, K. M. H.
('18) Ouschotcuthis, Sepien mit Krallen, Isis, 1S1S, pp. 1591-1592, pl. 19.
Linné, C. von.
(:58.) Systema naturae, Ed. X., Holmiac, 1758.
Loennberg, E .
('97.) Notes on some rare Cephalopods, Öfversigt Ki. Tet.-Akad. Förh., 1596, no. S, pp. 603-612, 4 cuts, 1597.
Martens, Ed. von.
('67.) Conclological Gleanings, fi, on the Species of Argonauta, Ann. and Mag. Nat. Ilist. (3), vol. 20, 1p. 103-106, 1567.
d'Orbigny, A. D.
(35.) Voyage dans l'A mérique méridionale . . . exécuté dans le cours des années 1ヶ26-33, vol. 5., Mollusques, l'aris, 1535-46.
d'Orbigny, A. D.
(45.) Mollusques vivants at fossiles ou deseription de toutes les espèees de coquilles et de mollusques classées suivant leur distribution géologique et gérgraphique, 600.5 p., 35 pls., Praris, 1515 . [. A reprint with a somewhat different title was issued in 1855.]
d'Orbigny, A. D.
(53.) Moliusques, in: Histoire phşsique, politique et naturelle de l'Ile de Cuba par M. Ramon de la Sagra, vol. 1, Paris, 1553.
Ortmann, A.
(88.) Japanisclie Cephalopoden, Zool. Jahrlücher, vol. 3, pp. 639-6i0. pls. 20-25, 1553.
Owen, R.
('38.) Descriptions of some Ňew and Rare Cephalopoda, Trans. Zoöl. Soc., vol. 2, part 2, pp. 103-130, pl. 21, 1838.
Pfeffer, G.
('84) Die Cephalopoden des IIamburger Naturhistorischen Mnscums, Abhandl. Naturwiss. Fer. Hambury, vol. 8, part 1, 30 p., 3 pls., 1854.
Pfeffer, G.
(:00.) Synopsis der oegopsiden Cephalopoden, Mitt. Naturhist. Mus. IIamburg (2 Beihrft z. Juhrb. IIamburg. Wissensch. Anstalten), vol. 17. pp. 147-199, 1900.
Quoy, J. R. C., \& J. P. Gaimard.
(32.) Zoologic, in: Voyage de l'Astrolahe, pendant les aunées 1826-29, sous le commandement de M. J. Dumont d'Urville, vol. 2, Paris, 1532.

Rang, S .

(37.) Documents pour servir ì l'histnire naturelle des Céplaal podes crrptodibrauches, Mag. de Zool., Classe V., 17 p., pls. \$6-101, 153 亿.
Risso, A.
('26.) Ilistoire naturelle des principales productions de l'Europe méridionale et particulièrement de eelles des emrirons de Niec et des Alpes Maritimes, tome t, 439 p ., l'aris, l 526 . [Céphalopodes, pp. 1-25]
Schneider, J. G.
(84.) Characteristik des ganzen Geschlechts und der cinzelnen Arten rot Blakfischen, Samml. vermischt. Abhandl. z. Aufklar. d. Zool., 1p. 10j-13t, Berlin, 1751 .
Smith, E. A.
(02) Mollusea, in: Report on the Collections of Natural History made in the Antaretic Recrions during the rorage of the "Southern Cross," pp. 201-213, pls. 24, 25, London (Brit. Mus.), 1902.
Souleyet, L.
('52.) In: Eynotx, F., \& I. Souleyet, Vorage autour du monde exécuté peudant les amées 1536 et 153 亿 sur la corrette La loonite commandée par M. Vaillant; Zoologic, rol. $\stackrel{9}{2}$ pp. 7-36, pls. 1-3, Paris, 1552.

Solander, D.
(86.) In: A Catalogne of the Portland Muscum, lately the properts of the Duchess Dowager of Portlaud, deceased, which will be sold br anction April 24, 1756.

Steenstrup, J. J. S.
('56.) Iectocotyldammelsen hos Octopodslacgterne, Aigonauta og Tremoctopus, K. danske Fid. Selsk. Shr. (4), vol. 4, pp. 185-216, 2 pls. 1856.
[Translation by W. S. Dallas, Ann. and May. Nat. Mist. (2), vol. 20, pp. 61-111, 185\%.]

Steenstrup, J. J. S.
(59) Tvende nre Cephalopodslaegter, Vid. Medd. naturhist. Foren. Ǩjöbenharn for 1855, p. 183, 1859.

Steenstrup, J. J. S.
(61.) Orerblik over de i Kjöbenliarns Museer opberarede Blacksprutter fra det aabne Hav. (1860-61), Oiersigt K. D. Vid. Selsh. F'urhandl., p1. 69-86, 1561.

Steenstrup, J. J. S.
(80) De Ommatostrephagtige Blaeksprutters indbyrdes Forhold, op. cit., 1850, pp. 73-110, pl. iii.

Steenstrup, J. J. S.

(81.) Sepiadarium on Idiosepius, to nye Slaegter af Sepiernes Familie, K. Dansk. Vid. Selsk. Skr., (G) rol. 1, pp. 213-242, pl. 1, 1 SSl.

Steenstrup, J. J. S.

('87.) Notac 'Tenthologicae 6; Species generis Sepiolae Maris Mediterranci, op. cit., 1SST, 111. 47-66 [1-20], 18Si.

Steenstrup, J. J. S.
(87 a.) Notac Tcuthologicae 7, op. cit., 1SS7. pp. 67-126 [21-S0].
Tryon, G. W., Jr.
(79.) Manual of Concholoģs, structural and systematic, rol: 1, Cephalopoda, 316 p., 112 pls., Pliladelphia, 1579.

Verrill, A. E.
(79.) Notice of Recent Additions to the Marine Fauna of the Eastern Coust of North America, wo. 7 : Briof Contributions to Zoology from the Musema of Vale College, no. 44, Amer. Journ. Sci. (3), vol. 1S, pp. 468 150, I $4 i 9$.

Verrill, A. E.
('80) Noties of the Remarkable Marine Fauma oceupsing the Outer Banks will the Smithern Const of New England; Brief Contrihutions, ete., no. 47, op. cil. (3), wol. 20, 11p. 390-403, 1580 .

Verrill, A. E.
('804.) The Cephatopots of the North-Fiastem Coast of America, part 1, The Gigmtie Squids (.trehitenthis) anl their Allies, with Observations on similar larene Speeies from forcisn lucalaties, Trans. Comect. Acad., vol, 5, 1p. 177-257, pls. 13-25 (11. 17i-192, December, 1879), 1550.

Verrill, A. E.

('81.) Op. rit, part 2, The smaller Cephalopods, including the "Squids" and the "Octopi," with other allied Forms, tom. cit., pp. 259-446, pls. 26-41, 45-56 (pp. 259-2S2, 1S80), 1881.

Verrill, A. E.

(81 A .) Reports on the Results of Dredging, under the Supervision of Alcxander Agassiz, . . . by the U. S. Coast Survey Steamer "Blake," cte.; X., Report on the Cephalopods, and ou some additional Species dredged by the U. S. Fish Commission Steamer "Fish Hawk" during the Scason of 1850, Bull. Mus. Comp. Zoöl., vol. 8, no. 5, pp. 99-116, pls. 1-8, 1581.

Verrill, A. E.
('82). Report on the Cephalopods of the North-Eastern Coast of America, Ann. Rep. Commissioner Fish and Fisheries for 1579, pp. 211-455 [1-214], pls. 1-16, 1852.
Verrill, A. E.
('83.) Reports on the Results of Dredgiug, under the Supervision of Alexander Agassiz, in the Gulf of Mexico and in the Caribbean Sea (1878-i9), by the U. S. Coast Survey Steamer "Blake," LieutenantCommander C. D. Sigsbee, U. S. N., and Commander J. R. Bartlett, U. S. N., Commanding. XXIV. Supplementary Report on the "Blake" Ceplaalopods, Bull. Mas. Comp. Zö̈l., vol. 11, pp. 105-115, pls. l-3, 1853.

Verrill, A. E.
('83 a.) Descriptions of Two Species of Octopus from California, tom. cit., pp. 117-121, pls. t-6, 1 SS3.
Verrill, A. E.
('84) Second Catalogue of Mollusca recently added to the Fauna of the New Eugland Coast and the adjacent parts of the Atlantic, consisting mostly of Deep-Sea Species, with Notes on others previonsly recorded, Trans. Connect. Acal., vol. 6, part 1, pp. 139-29t, pls. 25-32, 1SS\&.

Verrill, A. E.
('85.) Third Catalogue, ctc., tom. cit., pp. 395-452, pls. 42-14, 1855.
Verrill, A. E.
('96.) The Opisthoteuthidae, A remarkahle New Family of Deep Sea Cephalopodi, with some remarks on some points in mollusean morphology, Amer. Journ. Sci., vol. 2, pp. 7t-S0, cuts, 1590.

[^0]: ${ }^{1}$ In allusion to the marked inequality in the length of the arms.

[^1]: 1 Measured from a point opposite the centre of the eye.

